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Abstract. Human motion analysis has been a common thread across modern and early medicine. While medicine evolves,
analysis of movement disorders is mostly based on clinical presentation and trained observers making subjective assessments
using clinical rating scales. Currently, the field of computer vision has seen exponential growth and successful medical
applications. While this has been the case, neurology, for the most part, has not embraced digital movement analysis. There
are many reasons for this including: the limited size of labeled datasets, accuracy and nontransparent nature of neural networks,
and potential legal and ethical concerns. We hypothesize that a number of opportunities are made available by advancements
in computer vision that will enable digitization of human form, movements, and will represent them synthetically in 3D.
Representing human movements within synthetic body models will potentially pave the way towards objective standardized
digital movement disorder diagnosis and building sharable open-source datasets from such processed videos. We provide
a hypothesis of this emerging field and describe how clinicians and computer scientists can navigate this new space. Such
digital movement capturing methods will be important for both machine learning-based diagnosis and computer vision-aided
clinical assessment. It would also supplement face-to-face clinical visits and be used for longitudinal monitoring and remote
diagnosis.

Keywords: Artificial intelligence, computer-assisted diagnosis, computer-assisted image processing, neural networks (com-
puter), movement disorders, Parkinson’s disease

INTRODUCTION

The field of computer vision has advanced con-
siderably and approaches that recognize faces,
handwriting, and digitize human form are now
routine [1–4]. Yet, despite these tools becoming rela-
tively commonplace, we are still reluctant to embrace
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0705; E-mail: thmurphy@mail.ubc.ca.

them during the clinical assessment of movement dis-
orders. There are many potential reasons for the slow
adoption of computer vision and machine learning
in movement disorders assessment. First, the size of
training, validation, and testing datasets for move-
ment disorders is limited. Due to privacy issues,
individual patient data will require extensive data
usage agreements before sharing within aggregate
datasets [5]. Consequently, it requires either build-
ing an accurate diagnosis system from datasets with
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only a few examples or producing a representation
of the patient’s data without privacy concerns. Sec-
ond, there is concern about the robustness of clinical
diagnosis systems. For example, medical machine
learning systems can be misled by small perturba-
tions like rotation or some invisible additive noise for
humans [6]. A well-known example is that a panda
will be recognized as a gibbon with high confidence
after adding noise not perceptible to humans [7]. For
Parkinson’s disease (PD), automated diagnosis based
on detecting dysphonia dropped to 37% from 93%
after similar in-perceptible perturbation [8]. Third,
there are potential legal and ethical concerns about the
black-box nature of machine learning and end-to-end
solutions that bypass clinicians [9].

The objectives of our hypothesis are to present
the emerging field of computer vision and pro-
vide cases for future adoption in clinical assessment
of movement disorders. Using a synthetic patient
interface where we represent human movements
within a framework of 3D realistic human mesh-
volumetric body models [10, 11], we hope that
the size of available training, validation, and test-
ing datasets can be increased (by sharing) and this
will enable standardized digital movement disor-
der diagnosis. Importantly, capture of human 3D
pose within an articulated 3D body model pro-
vides both path to visualization and quantification
since body keypoints coordinates are available for
further analysis and automated clinical severity
scoring.

Digital capture of human movements

The most instinctual usage of video recording is
to capture movements. In clinical diagnosis, it would
be as a permanent record of a motor assessment in
response to the commands of a clinical expert. While
there are methods to directly measure parkinsonian
movements using accelerometers and other sensors
that hold considerable promise [12, 13], the proce-
dure of data capture is complex and requires specific
devices with often limited bandwidth. The raw sig-
nals (such as angle, velocity, and acceleration) do
not directly lead to a diagnosis of movement disor-
ders and are hard to visualize and directly interpret
by clinicians [14]. Therefore, approaches that align
with current observer-based clinical motor assess-
ment such as video recordings and motion capture
are potentially more instinctive for clinicians than
sensor-based methods. While such videos would be
a necessary adjunct to the clinical record, standard-

ization of parameters such as lighting, camera angle,
field of view, and concern around privacy also may
limit utility. Notwithstanding the drawbacks of video
recording, advances in computer vision provide the
means of capturing human form within a digital
environment [15–17]. Here, previous research has
established that biological motion and pose (dispo-
sition in space) can be represented using coordinates
based on body keypoints (limbs, digits, etc.) [18].
There is also the possibility to represent these poses
within the context of skeletal or volumetric body
models [10, 19]. We suggest that human body syn-
thetic models may provide a more generic solution
enabling anonymization and standardization across
centers necessary for future use of digitized move-
ments as a clinical biomarker.

What’s important for the diagnosis of movement
disorders?

The diagnosis of movement disorders such as PD
is rooted in patient and family history, symptom
onset, and physical exam features [20]. Particular
importance is placed on qualitative features of resting
tremor, bradykinesia, rigidity, and gait disturbance as
these symptoms can be followed to evaluate disease
progression and treatment response using scoring
by human observers. Typically, clinical movement
disorder rating scales have clinical severity scores
for both whole body posture and walking move-
ments, but also more fine features such as movements
of hands and fingers (tapping). To illustrate these
points, we examine the Movement Disorder Society
Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) [21]. Computer vision and augmentation
(interpolated 3D views) through the use of syn-
thetic human form could be particularly useful for
motor examination (part III) of the MDS-UPDRS
(Fig. 1). Initial scales (MDS-UPDRS Sections 3.1-
3.2) involve speech and facial expressions. Facial
expressions are also potentially well suited to auto-
matic analysis using higher resolution models [22,
23] or specific face models [3]. Some aspects of
motor scales, such as Motor Examination in MDS-
UPDRS Section 3.3, require assessment of rigidity
using a clinical observer to manipulate limbs and the
neck. Since they require observer action and patient
feedback, it is unlikely that these components of
motor scales could be fully automated. Computer
vision could potentially contribute to most of the
other aspects: on the finest level, cameras optimized
to report finger tapping would be necessary for Motor
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Fig. 1. Scheme for clinical assessment with any movement-related clinical rating scale. The movement-related clinical rating scale has a
pivotal role in the diagnosis of neurological diseases such as Parkinson’s disease. There are several possible ways to conduct an assessment
of clinical rating scale: face-to-face assessment, remote assessment based on raw video recording, remote assessment based on anonymous
videos, and automated assessment with algorithms. We argue that the anonymous video is of benefit to privacy protection, assessment, and
algorithm design.

Examination in MDS-UPDRS Section 3.4 and lower
resolution full body capture for Motor Examination
in MDS-UPDRS Sections 3.5 and 3.6 that involve
aspects of locomotion and transitioning from seated
to standing posture. Re-creation of complete clinical
rating scales from a single camera view is not possible
as it will require subjects to perform tasks not suited
to computer vision-based analysis or will involve dif-
ferent levels of resolution. Conceivably, a subset of
movement-related phenomena that are well suited to
computer vision could be used to predict the overall
MDS-UPDRS score [24] or treatment response [25]

providing some form of clinical guidance but still
requiring interactive tests in other domains.

Video monitoring of Parkinson’s disease to refine
clinical diagnosis

There are many challenges in idiopathic parkinson-
ism, such as differential diagnosis from Parkinson-
plus syndromes [26, 27]. While most physicians
may readily notice tremor, bradykinesia, and postural
instability, there is currently no test that can effec-
tively confirm the diagnosis of idiopathic PD. At
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Fig. 2. Illustration of synthetic human body modeling methods. A) Raw video image from open-source examples of Parkinson’s disease
characterization through postural assessment. This video was obtained with permission from publisher Wiley [57]. B) Keypoints overlaid
on video images. C) Skeletal representation. D) Body-parts-based representation. E) 3D volumetric representation.

initial assessment, the main focus is put on confirm-
ing cardinal signs in PD [20]. However, the clinical
course of the illness may reveal it is not PD, requiring
that the clinical presentation be periodically reviewed
to confirm the accuracy of the diagnosis [20, 28].
When PD diagnoses are checked by autopsy, on aver-
age, movement disorders experts are found to be 80%
accurate at initial assessment and 84% accurate after
they have refined their diagnoses at follow-up exam-
inations [29]. Capture of human 3D pose within an
articulated 3D body model can facilitate the remote
diagnosis and longitudinal monitoring of motor func-
tion to promote diagnostic accuracy.

Towards the diagnosis of movement disorders
based on video recording

A typical diagnosis procedure of movement dis-
orders based on video recording could involve
the following steps: capturing human motion from
videos, analyzing motion trajectories with diagno-
sis algorithms or experts, and evaluating the result in
light of the patient’s clinical history and presentation
(Fig. 1). Here we review the steps that form the basis
for diagnosis within any movement-related clinical
rating scale. We also introduce the use of synthetic
human form that enables the expert to be remote or
diagnose at a later time, as the anonymized data can
be stored and sent without risks to privacy [30].

A variety of methods have been proposed to
capture human pose and motion necessary for diag-

nosis of movement disorders. In this hypothesis, the
term ‘human pose estimator’ will be used in its
broadest sense to refer to all computer vision-based
algorithms to capture human pose and motion. A
human pose estimator can be categorized into marker-
based and markerless approaches. A marker-based
approach requires subjects to wear fiducial mark-
ers on a specialized bodysuit or attached to their
clothes [31, 32]. Disadvantages of this approach
include demands for markers themselves, additional
complexity, as well as concerns around sterilization
and use across subjects. The markerless approach
involves using a pre-trained deep neural network (see
Supplementary Material for a glossary) to automat-
ically identify joints and other keypoints of subjects
[33, 34]. Although it can be slightly less accurate than
the marker-based approach, advantages of marker-
less approaches include generalizability to different
clothing and background and ease of use. A mark-
erless approach can be classified based on how it
virtually represents the human body: including a
skeletal model with keypoints [2], a 2D human body
model [35], or a 3D human body model (volumet-
ric model) [1, 36, 37] (Fig. 2). Human synthetic
body models are potentially adaptable to any pop-
ulation including elderly patients with movement
disorders. One of the most widely used models,
SMPL, was learned from the CAESAR dataset. The
CAESAR dataset consists of a total of 3800 3D body
scans collected from American and European civil-
ians whose age ranges from 18 to 65 [38]. The latest
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Table 1
Summary of datasets on 3D human pose estimation

Datasets HumanEva [46] Human3.6M [45] MPI-INF-3DHP [47] TotalCapture [31] 3DPW [50] AMASS [48]

Number of subjects 4 11 8 5 7 344
Number of poses 37000 3.6 M 1.3 M 1892176 51000 11265
Types of actions 6 15 8 4 – –
Sex ratio – 6 : 5 4 : 4 4 : 1 – –
Age – – – – – –
BMI – 17–29 – – – –

upgraded version of the SMPL model, STAR, is able
to account for differences in body mass index by
learning from both CAESAR and SizeUSA datasets
[11]. The SizeUSA dataset was collected from 2845
male and 6434 females with ages varying between
18 to 66 + providing diversity that may better match
clinical populations [39]. The output of a human pose
estimator is movement data (a series of vectors) that
can be overlaid on the original raw video (see Sup-
plementary Video 1). The movement data can then
be analyzed to examine aspects of motor behaviors.
Reducing video data to a series of vectors greatly sim-
plifies the complexity and the computational cost of
analysis.

We have focused on models necessary for auto-
mated diagnosis. It is also necessary to emphasize
the importance of training, validation, and testing
dataset scale and quality. Potentially, the “no free
lunch” theorem holds for any algorithm [40], where
any improvement in performance on one task must
be paid for by lesser performance on other tasks. In
contrast, the scale of datasets is a universal driving
factor of performance, and it has some unique features
[41]. First, the scale of data is often more impor-
tant than the quality of the data. Second, there is a
positive logarithmic relationship between the perfor-
mance of computer vision algorithms and the scale of
datasets. In summary, the scale of the training dataset
guarantees the lower bound of the algorithm’s perfor-
mance. On the other hand, garbage in, garbage out:
the quality of the dataset limits the upper bound of the
algorithm’s performance. A positive correlation was
found between the resolution of video recording and
performance of pose estimation for normal human
subjects [42]. Motion blur and occlusion can also
result in false pose detection and should be avoided
or compensated for with both normal and PD datasets
[43]. In general, the quality of any training, validation,
and testing dataset can be assessed from the follow-
ing dimensions: accuracy, completeness, redundancy,
reliability, consistency, usefulness, and confidential-
ity [44]. In the context of PD datasets, these criteria

could refer to the accuracy of 3D pose, completeness
of patient information, reliability of MDS-UPDRS
score, consistency in data format, etc.

In human pose estimation, large-scale training,
validation, and testing datasets use marker-based
tracking and triangulation from multiple cameras to
place subjects within a 3D coordinate system and
are typically captured in a specialized studio. The
most widely used datasets for 3D human pose esti-
mation model training, validation, and testing are:
HumanEva, Human3.6M, MPI-INF-3DHP, Total-
Capture, 3DPW, and AMASS [31, 45–50]. These
datasets include images, videos, and annotations.
Annotations can include: 2D poses, positions of key-
points in 3D space, types of activities, and 3D body
scans corresponding to images (Table 1). To date,
one of the major obstacles of applying any computer
vision approach to movement disorders related data
is access to training, validation and testing datasets
that reflect both the scale and diversity of expected
clinical populations.

Comparing the performance of human pose
estimators

Neural network pose estimators are trained, vali-
dated, and tested on a large example set collected in
a controlled studio. To be generalizable, they need
to be adapted to apply to human motion data, col-
lected from any scene, performed by different objects.
Domain adaptation can broadly be defined as the
ability of a model trained on one dataset to still per-
form well when employed on different but relevant
datasets. Existing research has recognized the critical
role of domain adaptation and investigated the perfor-
mance of 3D human pose estimators in the context of
wild settings (non-studio or controlled environment)
[51, 52], but in the absence of motor impairments.

In most recent studies, deep neural networks have
dominated the field of human pose estimation [34].
Those algorithms can be coarsely classified accord-
ing to their input and output. The explicit structure of
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Table 2
Performance of 3D human pose estimators for normal human subjects based on published values

Skeletal model Volumetric model

Algorithms VideoPose 3D [2] Densepose3D [37] VIBE [1] PyMAF [23]
Error on
Human3.6M
(MPJPE)

46.8 mm 113.6 mm 65.9 mm 57.7 mm

Features Simple, fast, less bias Do not require
pre-built 3D
model

Video-based, Successful
implement in movement
disorder diagnosis

Frame-based,
Supports single
image

Disadvantages Unable to capture
small repetitive body
movements, lack of
shape information

Lower accuracy,
High
computational
cost

Over-parameterization, likely overfitting
(see Supplementary Material for a
glossary)

Links for code https://github.com/
facebookresearch/
VideoPose3D

– https://github.
com/mkocabas/
VIBE

https://hongwen
zhang.github.
io/pymaf

deep neural networks can be designed to work with
different inputs and outputs. Generally, the input of a
deep neural network can be one single frame (frame
based) or a sequence of successive frames (video
based). The output can be keypoints that depict joints
of the human body (skeletal), parameters that control
an existing 3D model of the human body (volumetric
model based) or pointcloud which directly repre-
sent the human body in 3D space (pre-built model
free).

To compare the different algorithms that could be
applied to video of PD patients, we choose dense-
pose3D (pre-built model free), VIBE (video based),
and PyMAF (frame based) as these represent the
most accurate tools for volumetric based methods
of human pose estimation to date [1, 23, 37]. As a
comparison, we report accuracy with VideoPose3D,
a well-used skeletal method (keypoints model) that
can serve as a benchmark measurement [2]. We list
the performance and features of different 3D human
pose estimators [1, 2, 23, 37] on large scale human
3D pose datasets of healthy people [45] in Table 2.
The performance was measured using mean per
joint position error (MPJPE) in mm on Human3.6M
datasets (see Supplementary Material for a glossary).
Human3.6M datasets consist of 3.6 million differ-
ent human poses taken during 15 daily activities like
walking, sitting, eating, etc. [45]. The poses were
collected with a motion capture system and its corre-
sponding image recorded from 4 camera views. The
motions in Human3.6M datasets were performed by
11 healthy professional actors, 5 female and 6 male,
whose BMI ranges from 17 to 29. Poses from 2 male
and 2 female motions were kept as testing datasets.
A limitation is that demographic information like age

and ethnicity was not reported. It is significant that
most reported error measurements are relatively small
compared to expected changes during movements
such as walking or stooped posture that characterize
motor impairments, with the exception of tremor and
bradykinesia (see below). Nonetheless, it is conceiv-
able that error values reported for commonly used
algorithms may not necessarily be generalizable to
all subjects, in particular those affected by movement
disorders such as PD. Therefore, we also evaluated
the performance of different pose estimators [1, 2,
36, 53–56] on available open-source movement dis-
orders videos [57] collected under “wild settings” that
could represent video captured without specialized
equipment within a clinical environment (Table 3,
see Supplementary Video 1). The open-source move-
ment disorders videos from a male subject late 70 s
with advanced PD with sporadic responses to oral
levodopa. The videos were taken in the “off” state.
In the absence of these motion-capture studios and
3D ground truth (see Supplementary Material for
a glossary), we projected the information from 3D
back to 2D and examined its alignment relative to
2D images. We adapted two metrics in 2D human
pose estimation to assess the reprojection accuracy,
the percentage of correct keypoints (PCK) and the
area under the curve (AUC) [58, 59]. The accuracy of
different human 3D pose estimators (assessed using
reprojection) was up to 90% when compared to the
human ground truth or a computer vision-based algo-
rithm DeepLabCut (DLC) [53] and, as expected, was
lower for all methods when expressed as the more
stringent AUC (Table 3). It will be important to esti-
mate how well the volumetric models trained on large
groups of normal individuals transfer to PD patients;

https://github.com/facebookresearch/VideoPose3D
https://github.com/facebookresearch/VideoPose3D
https://github.com/facebookresearch/VideoPose3D
https://github.com/mkocabas/VIBE
https://github.com/mkocabas/VIBE
https://github.com/mkocabas/VIBE
https://hongwenzhang.github.io/pymaf
https://hongwenzhang.github.io/pymaf
https://hongwenzhang.github.io/pymaf
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Table 3
Calculated reprojection accuracy of different human pose estimators

Algorithms Deep LabCut Open pose Detectron2
+ Mask RCNN

Video Pose3D VIBE PyMAF

Using human
labeling as the
ground truth 100%
(1 video clip, see
Supplementary
Video 1)

Mean
PCK@0.2

97.71% 90.00% 92.04% 79.62% 92.33% 95.24%

Mean AUC on
PCK@0.2

74.51% 55.85% 56.34% 38.08% 47.85% 52.86%

Using
DeepLabCut as
the ground truth
100% (across
10 video clips)

Mean
PCK@0.2

– – 87.32% 82.11% 85.25% 89.57%

STD
PCK@0.2

– – 5.15% 7.18% 6.81% 6.64%

Mean AUC on
PCK@0.2

– – 53.09% 39.76% 42.85% 49.31%

Links for Codes https://github.
com/Deep
LabCut/
DeepLabCut

https://github.
com/CMU-
Perceptual-
Computing-
Lab/openpose

https://github.
com/facebook
research/d
etectron2

https://github.
com/facebook
research/
VideoPose3D

https://gith
ub.com/m
kocabas/V
IBE

https://hon
gwenzhang.
github.io
/pymaf/

so far, our results with 2D video to 3D volumetric
models (Table 3) indicate that this will work. These
results must be interpreted with caution because the
pose data is likely limited to only gait and gross body
posture analysis. It has previously been observed that
rating tremor and bradykinesia with video recording
can be difficult for even well-trained human raters
[60, 61]. In contrast, gait and postural stability anal-
ysis based on video recording has strong agreement
between human raters [60, 61]. This difficulty may
be due to technology limitations in video recording
using webcam or cell phone cameras: such as cam-
era motion blur, single view angle, resolution, etc.
However, a full discussion of camera related issues is
beyond the scope of this study.

Challenges and opportunities with digital
movement capture and analysis.

There are also multiple challenges associated with
video analysis. Although all three model types (skele-
tal models, 2D human body models, and volumetric
models) (Fig. 2C-E) satisfy ethical concerns around
patient anonymity, only volumetric models are par-
ticularly suited for qualitative clinical diagnosis by
expert observers because they have the appearance of
human subjects. However, volumetric models could
suffer from inherent biases and assumptions about
shape, which are built into the model. In terms of
computational load, the skeletal model requires less
processing and would be the most efficient, but lacks

human appearance. Overall, by having data within the
context of 3D models, observers have additional flex-
ibility with respect to viewing angle for potentially
more accurate scoring, or the ability to match view
angles from different studies or sites. It is notewor-
thy that artifacts could be introduced due to camera
occlusion and other factors. Furthermore, tremors and
small repetitive body movements associated with PD
would be within the error of most human pose esti-
mators using the most advanced commercial video
capture systems [25]. Alternatively, depth-sensing
motion ability (like Azure Kinect, Intel RealSense,
etc.) [62, 63] or motion sensing devices such as
accelerometers [12, 13] might be better suited for
this use case and used as an adjuvant to video scor-
ing. As human movement recording equipment and
pose estimation algorithms advance, we anticipate
these techniques can be used to collect visualizable,
de-identified biomarkers of human movement dis-
orders. First, digitally captured movement disorder
data allows anonymization of datasets which will be
a vehicle for data sharing and future collaboration by
placing the data within a common synthetic format.
It can relieve the problem of insufficient data dur-
ing training of neural networks. Second, it provides
a vehicle for re-evaluation by multiple clinical raters.
Previous studies have shown interrater variability
within the MDS-UPDRS: human raters often dis-
agree on the exact severity of a single patient [24, 64].
With digitally captured data and the use of volumetric
models, it will be possible to potentially elicit second

https://github.com/DeepLabCut/DeepLabCut
https://github.com/DeepLabCut/DeepLabCut
https://github.com/DeepLabCut/DeepLabCut
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/VideoPose3D
https://github.com/facebookresearch/VideoPose3D
https://github.com/facebookresearch/VideoPose3D
https://github.com/mkocabas/VIBE
https://github.com/mkocabas/VIBE
https://github.com/mkocabas/VIBE
https://hongwenzhang.github.io/pymaf/
https://hongwenzhang.github.io/pymaf/
https://hongwenzhang.github.io/pymaf/
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opinions on ambiguous findings from re-analysis by
human raters. Third, collection of raw video data
and then conversion to a synthetic format may help
remove bias clinicians could have if they were trained
on a patient population which was not necessarily
representative of all current patients. For example,
synthetic models can help remove the influence of
factors due to the clothing or lighting associated with
particular patient image acquisition. Conversion of
movements to a standard body plan may also reduce
ambiguities around a person of extreme variation
within body mass index (BMI), although synthetic
models also exist that can represent BMI. Fourth,
video capture and the use of robust synthetic meth-
ods for anonymization could potentially provide the
opportunity to capture variation in movement chron-
ically within the patient homes. These assessments
combined with robust algorithms to differentiate a
normal from disease-based movements could be use-
ful in detection of early pre-manifest events which
would be otherwise rare to observe within a short
typical clinical assessment.

There are more challenges in the later stages of
PD, as most PD patients eventually need levodopa
and later develop levodopa-induced fluctuations and
dyskinesias [28, 65]. In this case, the aim is to reduce
PD symptoms while controlling fluctuations in the
effect of the medication [28]. Instead of periodically
following up in the clinic, a better solution may be
longitudinal monitoring of motor fluctuations and
dyskinesias in patient-own environments. However,
some limitations are expected in patient-own envi-
ronments during longitudinal monitoring. First, the
major cause of occlusion will be furniture instead
of clinicians and other patients. Second, more vari-
ability in illumination is caused by daylight instead
of institutional lighting. Third, the recording devices
in patient-own environments are consumer-grade
devices like webcams, cellphones, and surveillance
cameras. The resolution and sampling rate may result
in inability to capture high frequency movement like
tremors. Similarly, long shutter speeds can lead to
motion blur. To relieve those problems to a certain
degree, multiple cameras can be employed for bet-
ter results. We suggest that patients and providers
could fix with tripods and standardized pipelines for
video capture aided by known fiducial objects. In
the absence of calibration, advanced machine learn-
ing approaches could approximate spatial calibration
and perspective from known structures such as walls
and the orientation of the patient within the assumed
vertical axis.

Going from movement data to diagnosis and
treatment

Once human poses and movements (pose
sequences) are obtained, algorithms can further align
findings to clinical rating scales and alert the clinician
to pay attention to the abnormal movements pre-
sented in the video. To date, several studies have had
some success for aligning movement data with clini-
cal rating scales [66–68]. To address rater variability,
one can employ focal neural networks and introduce
a regularization (see Supplementary Material for a
glossary) term such as a rater confusion estimation
which encodes the rating habits and patterns of dif-
ferent raters [24]. Using this approach, an automated
video-based PD diagnosis algorithm reached an accu-
racy of 72% for consistency with the majority rater
vote and an accuracy of 84% for consistency with at
least one of all raters when predicting MDS-UPDRS
scores for gait and finger tapping. Although recent
work suggests markerless video approaches have had
some success for PD [24, 25, 68, 69], overall accuracy
could be improved when compared to sensor-based
approaches [12, 70]. We should emphasize that there
are minimal potential barriers for application as most
models are pre-trained requiring little user input.

Accurate diagnosis of PD requires assessment of
both dynamic properties of human pose such as gait
analysis, but also static properties like postural defor-
mities and dystonia. For example, in the early stages
of PD, rigidity is often asymmetrical and tends to
affect the neck and shoulder muscles prior to the
muscles of the extremities [71]. The continuous con-
traction of muscles may cause typical posture of the
body [20, 72]. We assert that static postural changes
would be ideally quantified using automated methods
that could potentially be less subject to limitations
around bandwidth associated with motion capture.
Previous work in pose estimation was able to iden-
tify differences within subjects based on individual
static images [73, 74]. The patient may also manifest
mask-like facial expression (hypomimia, a reduced
degree of facial expression) [20]. The facial expres-
sion is not easy to track by keypoints-based methods
(that mark discrete body parts), but recent expressive
body recovery methods, such as PIXIE [75], show
promising results that can reconstruct an expressive
body with detailed face shape and hand articulation
from a single image.

Current automated systems assist diagnosis instead
of bypassing clinicians and efforts to improve their
interpretability have been minimal. Intuition, pattern
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recognition, and clinical training are an important part
of any movement disorders diagnosis. We empha-
size that the use of synthetic data does not exclude
the use of supervised machine learning approaches
that have been trained based on labels derived
from the intuition of clinical experts. As digital
movement capture methods become more routine,
more data will be gathered within common formats.
By combining these evolving datasets with exist-
ing everyday human activities datasets like MPII
and Human3.6M [45, 76], it makes measuring the
deviation from normal movements plausible. It is
conceivable that this could be used as a screening tool
to assist clinician diagnosis by highlighting suspi-
cious movements, and examining at-risk individuals
leading to earlier symptom identification, and poten-
tial lifestyle or treatment options being implemented
proactively. It also benefits the development of a
human interpretable algorithm in quantitative diag-
nosis. Although machine learning models have been
successfully applied in medical imaging, these meth-
ods often fail to convince users because of a lack
of transparency, interpretability, and visualization.
Human interpretability (see Supplementary Material
for a glossary) is fundamental to developing a reliable
and understandable diagnosis algorithm for clinical
use since the user might be misled by incorrect pre-
diction of a black box system [77, 78]. Interpretability
can be enhanced when the algorithm can weight
model features based on known human body parts
[79]. With a transparent and interpretable algorithm,
users can decide whether the prediction for a body
part of interest is reasonable or not. However, human
interpretability is hard to quantify. We suggest the
volumetric representation could be used as a visual-
ization tool during the collection of human feedback,
such as anonymized evaluation by expert raters.

As the disease advances, deep brain stimulation
(DBS) has been used to reduce motor symptoms in
severe cases where drugs are ineffective and cause
side effects [28, 80]. In this case, the video-based 3D
body model approach can be used to create body maps
of motor changes for a patient and can serve as a visu-
alization tool for physicians and open the opportunity
for remote modulation of DBS parameters.

Conclusion and future directions

We anticipate that the use of synthetic human
form may aid the uptake of movement data as an
open-source biomarker. Synthetic human form also
provides an ideal vehicle for the generation of aug-

mented training data for use within next-generation
computer vision algorithms [81–83]. Animal studies
have already taken advantage of a synthetic mouse
model [84] to generate training data for pose estima-
tion. In other work, a synthetic full body drosophila
model [85] permits virtual force measurements. We
anticipate that human 3D body models will be both
tools for addressing relevant physiological questions
concerning human form and providing specific forms
of training, validation and testing datasets that lead to
improved quantification of both normal function and
disease.
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