
MINI REVIEW ARTICLE
published: 18 January 2013

doi: 10.3389/fncir.2012.00127

Towards a circuit mechanism for movement tuning
in motor cortex
Thomas C. Harrison* and Timothy H. Murphy*

Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada

Edited by:

Gordon M. Shepherd, Northwestern
University, USA

Reviewed by:

Yifat Prut, The Hebrew
University-Hadassah Medical
School, Israel
John Martin, The City College of the
City University of New York, USA
Patrick L. Sheets, Indiana University
School of Medicine-South Bend,
USA

*Correspondence:

Thomas C. Harrison and Timothy
H. Murphy, Department of
Psychiatry, University of British
Columbia, 2255 Wesbrook Mall,
Vancouver, BC V6T1Z3, Canada.
e-mail: harrisontc@gmail.com;
thmurphy@ubc.ca

The firing rates of neurons in primate motor cortex have been related to
multiple parameters of voluntary movement. This finding has been corroborated by
stimulation-based studies that have mapped complex movements in rodent and primate
motor cortex. However, it has been difficult to link the movement tuning of a neuron
with its role within the cortical microcircuit. In sensory cortex, neuronal tuning is largely
established by afferents delivering information from tuned receptors in the periphery.
Motor cortex, which lacks the granular input layer, may be better understood by analyzing
its efferent projections. As a primary source of cortical output, layer 5 neurons represent
an ideal starting point for this line of experimentation. It is in these deep output layers
that movements can most effectively be evoked by intracortical microstimulation and
recordings can obtain the most useful signals for the control of motor prostheses. Studies
focused on layer 5 output neurons have revealed that projection identity is a fundamental
property related to the laminar position, receptive field and ion channel complement of
these cells. Given the variety of brain areas targeted by layer 5 output neurons, knowledge
of a neuron’s downstream connectivity may provide insight into its movement tuning.
Future experiments that relate motor behavior to the activity of neurons with a known
projection identity will yield a more detailed understanding of the function of cortical
microcircuits.
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INTRODUCTION
One of the great achievements in neuroscience is our detailed
understanding of the circuitry and function of the visual sys-
tem. A well-defined anatomical framework and an established
parameter space for visual stimulation have expedited research on
the computations performed by the visual cortex. A particularly
productive approach has been to develop circuit models of the
visual cortex based on its multiple input channels and to asso-
ciate these microcircuits with the macroscopic functional areas
of visual cortex (Sincich and Horton, 2005). Canonical circuits
may be conserved across all cortical regions, but it is apparent
that motor cortex, largely devoid of the granular input layer that
has anchored the study of the visual system, must be consid-
ered in a unique manner (Poggio and Bizzi, 2004; Shipp, 2005;
Shepherd, 2009). Recent experiments have begun to unravel the
microcircuitry of the motor cortex using its deep output layers as
a reference point. The next step will be to examine how these local
microcircuits vary with macroscopic maps of motor function.

Whereas the visual cortex is known to contain multiple over-
laid maps of neurons tuned to retinotopic space, ocular dom-
inance, orientation, etc. (Swindale, 2000), the topography of
motor cortex is less completely defined. In addition to the widely
accepted somatotopic organization of motor cortex (Penfield
and Boldrey, 1937), evidence is accumulating for a mapping of
movement categories (Graziano et al., 2002; Haiss and Schwarz,
2005; Ramanathan et al., 2006; Harrison et al., 2012). The firing

of individual neurons in motor cortex can be related to many
parameters of movement, but this tuning is less established and
more controversial than in sensory cortex. In this review, we
will review circuit properties of neurons in motor cortex that
are likely to confer movement tuning in an effort to link local
microcircuitry with macroscopic functional maps and motor
behavior.

MOVEMENT TUNING IN MOTOR CORTICAL NEURONS
The movement tuning of a neuron in motor cortex refers to
the relationship between its firing rate and variables such as the
speed, direction, joint angle, or endpoint of a movement, typi-
cally of the contralateral forelimb. Directional tuning of neurons
in motor cortex was first observed in recordings made from awake
primates performing a two-dimensional center-out reaching task
(Georgopoulos et al., 1982, 1986). The firing rate of a single neu-
ron is coarsely tuned to the direction of arm movement, but
the activity of a population of neurons can be linearly trans-
formed into a vector that predicts the speed and direction of
arm movement (Georgopoulos et al., 1988; Moran and Schwartz,
1999). However, similar tuning can be demonstrated in monkeys
trained to resist externally applied forces in various directions
without moving their forelimbs (Kalaska et al., 1989). Movement
tuning can also be altered by the changing the posture of the
forelimb (Scott and Kalaska, 1995). For these reasons, there has
been debate as to whether preferred movement directions are
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indeed a fundamental property of motor cortex or an epiphe-
nomenon emerging from activity more closely related to con-
trol of the peripheral musculature (Todorov, 2000; Scott, 2004).
It has also been argued that dynamic neuronal activity encodes
movement trajectories rather than instantaneous variables such
as direction, speed, or force (Hatsopoulos et al., 2007; Reimer
and Hatsopoulos, 2009; Churchland et al., 2012). Regardless of
the theoretical framework, both kinetic and kinematic informa-
tion from motor cortex has been productively exploited in the
development of brain-machine interfaces that control the move-
ment of computer cursors, artificial limbs, or paralyzed muscles
(Wessberg et al., 2000; Hochberg et al., 2006; Chestek et al., 2007;
Velliste et al., 2008; Ethier et al., 2012).

MACROSCOPIC MAPPING OF MOVEMENT IN MOTOR
CORTEX
The motor cortices of primates (Leyton and Sherrington, 1917;
Penfield and Boldrey, 1937; Rizzolatti and Luppino, 2001; Dum
and Strick, 2002; Gharbawie et al., 2011a) and rodents (Neafsey
and Sievert, 1982; Li and Waters, 1991; Tennant et al., 2010) have
long been recognized to possess a topographic map of body parts.
Beyond this broad somatotopic parcellation, finer structure has
been proposed to exist in motor cortex. The minimal stimulus
parameters adopted by practitioners of intracortical microstimu-
lation (ICMS) mapping led to the interpretation of motor cortex
as a mosaic of individual columns, each controlling a single
muscle in the periphery (Asanuma, 1975). This hypothesis has
since been refuted based on electrophysiological and anatomical
evidence of multiple colonies of cortical neurons that are dis-
tributed broadly throughout cortex yet innervate a single spinal
motoneuron (Jankowska et al., 1975; Rathelot and Strick, 2006).
Furthermore, individual primate corticospinal neurons target
multiple motoneurons and can facilitate or suppress several mus-
cles simultaneously (Shinoda et al., 1981; Cheney et al., 1985).
In rodents, all descending input is received by spinal interneurons
and then relayed to motoneurons that innervate muscles, adding
an additional layer of processing between cortex and the muscu-
lature. Finally, EMG-based mapping in primates and rodents has
revealed substantial overlap of muscle representations in motor
cortex (Donoghue and Wise, 1982; Donoghue et al., 1992; Park
et al., 2001; Ayling et al., 2009).

In contrast to the strictly somatotopic view of motor cortex
obtained by mapping with brief, low-intensity stimuli, experi-
ments with prolonged electrical or optogenetic stimulation have
reported an organization of motor cortex output based on move-
ment direction or category (Graziano et al., 2002, 2005; Haiss
and Schwarz, 2005; Stepniewska et al., 2005; Ramanathan et al.,
2006; Harrison et al., 2012). These stimulation-based experiments
broaden the definition of movement tuning in motor cortex,
which has traditionally been based on recordings made from
neurons during reaching behavior (Georgopoulos et al., 1982).
Moreover, they corroborate the clustering of preferred movement
directions in motor cortex reported from electrophysiological
recordings in primates (Amirikian and Georgopoulos, 2003; Ben-
Shaul et al., 2003; Georgopoulos et al., 2007). Directional tuning
has also been detected in human motor cortex using functional
magnetic resonance imaging (Eisenberg et al., 2010). Given that

movement tuning was observed despite the relatively coarse spa-
tial resolution of functional magnetic resonance imaging, clusters
of similarly tuned neurons are likely to exist in human motor
cortex.

The complex topography of motor cortex could reflect the
reduction of multiple dimensions of information onto the two-
dimensional cortical surface (Aflalo and Graziano, 2006), rem-
iniscent of the multiple feature maps overlaid onto primary
visual cortex (Swindale et al., 2000). Although motor maps may
contain clusters of similarly tuned neurons, the level of detail cur-
rently detected in these maps is coarser than in sensory maps
(Bonhoeffer and Grinvald, 1993; Schreiner and Winer, 2007). For
example, calcium imaging has a revealed clustering of neuronal
tuning properties in layer 2/3 neurons of rodent motor cortex
(Dombeck et al., 2009), but this is less pronounced than that of
orientation maps in cat visual cortex (Ohki et al., 2005). Whether
this difference is attributable to differences between the species,
the nature of the mapped parameter or the cortical region is an
open question.

ORIGINS OF MOVEMENT TUNING
Movement tuning is defined by firing rate and must ultimately
arise from the pattern of input that drives a particular neu-
ron to fire. As in other cortical areas, local inhibitory neurons
in motor cortex are hypothesized to act in concert with excita-
tory neurons to shape the tuning of downstream cells (Shapley
et al., 2003; Georgopoulos and Stefanis, 2007; Merchant et al.,
2008, 2012). Electrophysiological recordings have found that
fast-spiking interneurons in motor cortex exhibit tuning pro-
files that are broader than pyramidal neurons, suggesting that
they may contribute to movement tuning by restricting all but
the most excited neurons from firing (Isomura et al., 2009).
In both rodents and primates, inhibitory neurons increase their
firing rates throughout movement preparation and execution,
suggesting that they are likely to be involved in shaping mov-
ments rather than gating them through a sudden release of
inhibition (Isomura et al., 2009; Kaufman et al., 2010). Finally,
dendritic gating and amplification may provide an additional
means for the establishment of tuning beyond passive summa-
tion of inputs (London and Hausser, 2005; Harnett et al., 2012;
Lee et al., 2012; Xu et al., 2012). Identifying and characterizing
the many inputs that impart tuning to motor cortex output neu-
rons seems as daunting now as when Ramón y Cajal lamented
the “impenetrable thickets” of cortical networks (Ramón y Cajal,
1989). Fortunately, since excitatory connectivity within corti-
cal microcircuits is specified by the identities of both the pre-
and post-synaptic cells, knowledge of the projection identity of
motor cortical neurons provides an indication of the source of
their inputs (Brown and Hestrin, 2009; Anderson et al., 2010).
This makes the output layers of motor cortex a useful starting
point for circuit analysis akin to the input layers of visual cortex
(Shepherd, 2009).

RELATING MOVEMENT TUNING TO MICROCIRCUIT
PROPERTIES
The fact that recordings from motor cortex can extract use-
ful kinematic information for the control of neural prostheses
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suggests that the activity of neurons in the motor cortex encodes
information relevant to the direction of intended movement
(Chapin et al., 1999; Chadwick et al., 2011; Collinger et al.,
2012). It remains to be determined how the circuit properties
of cortical neurons confer their movement tuning. The majority
of our knowledge about the firing properties of motor cortical
neurons and movement tuning has come from primate studies,
where relating neuronal activity to such microcircuit variables can
be difficult (Sheets and Shepherd, 2011). The microcircuitry of
motor cortex is now being studied intensively in rodents (Isomura
et al., 2009; Anderson et al., 2010; Matyas et al., 2010; Mao
et al., 2011), which possess many experimental advantages but
also differ from the primate motor system in terms of thala-
mic (Aldes, 1988) and intracortical connectivity (Keller, 1993),
the relative thickness of cortical layers (Hutsler et al., 2005), and
dopaminergic input (Berger et al., 1991). Rodents also lack cor-
ticomotoneurons, a class of corticospinal neuron that synapse
directly onto motoneurons rather than engaging local spinal cir-
cuitry (Lemon, 2008). An attempt to link motor microcircuits
with movement tuning must draw upon the relative advantages
of multiple animal models, while acknowledging the differences
between them. In both primates and rodents, neurons can be clas-
sified by a set of inter-related attributes, including the region of
cortex that they inhabit laminar position, morphology, and their
complement of transmitters and receptors.

The relationship between a neuron’s movement tuning and
its location within cortex is not well-defined. The existence of
multiple movement maps and the broad distribution of motor-
related neurons, particularly in primate motor cortex (Gharbawie
et al., 2011b), makes it difficult to predict based on cortical
position whether a neuron is likely to possess movement tun-
ing. Recordings from M1 provide the most useful signal for
neural prostheses (Carmena et al., 2003; Vargas-Irwin et al.,
2010), but a greater proportion of neurons in PMv possess
“extrinsic-like” tuning to arm movement independent of pos-
ture (Kakei et al., 2001). Better established is the link between
movement tuning and cortical depth. The concept of the cor-
tical column has been applied to movement tuning in motor
cortex, with consistent tuning reported across radial depths
of ∼500 mm in primates (Ben-Shaul et al., 2003; Georgopoulos
et al., 2007). Although signals useful for the control of brain
machine interfaces can be extracted without penetrating the cor-
tex (Wolpaw and McFarland, 2004), they are strongest in layers
5–6 (Parikh et al., 2009). Microstimulation studies have found
movements to be most easily evoked from these deep cortical
layers (Donoghue and Wise, 1982; Neafsey and Sievert, 1982;
Young et al., 2011). Selective stimulation of ChR2-expressing
neurons located predominantly in layer 5B yields a motor map
subdivided by movement direction that persists after pharmaco-
logical blockade of intracortical glutamate receptors (Harrison
et al., 2012). Taken together, these observations suggest that
movement-tuned neurons in motor cortex are present in the deep
cortical layers.

In motor cortex, as in all cortical areas, the layer occupied
by a neuron’s soma is closely related to its projection identity
(Hooks et al., 2011; Mao et al., 2011). Neurons in the superfi-
cial cortical laminae (2/3) form connections within their layer

and send strong projections to layer 5 (Weiler et al., 2008). Layer
2/3 neurons, theorized to selectively amplify inputs to a cortical
region (Douglas and Martin, 2004; Weiler et al., 2008; Adesnik
and Scanziani, 2010), also possess movement tuning (Merchant
et al., 2008; Dombeck et al., 2009). Connectivity in this pathway
is determined by both the projection identity and radial position
of the recipient neuron within layer 5 (Anderson et al., 2010). The
projection identity of layer 5 neurons is also linked with their
intralaminar connectivity (Brown and Hestrin, 2009; Kiritani
et al., 2012), morphology (Gao and Zheng, 2004) and intrinsic
electrophysiological properties (Hattox and Nelson, 2007; Sheets
et al., 2011). Therefore, the projection identity of a motor cor-
tical neuron can be related to microcircuit properties including
its receptive field and its excitability, which together determine a
neuron’s tuning properties (Lee et al., 2012).

PROJECTION IDENTITY AND MOVEMENT TUNING
Just as the response properties of granular neurons in visual cor-
tex are largely derived from their inputs (Ferster and Miller, 2000;
Huberman et al., 2008), it follows that the tuning of corticofugal
neurons in motor cortex might be related to their outputs. Layer 5
pyramidal neurons are likely to be mediators of movement tuning
within a columnar microcircuit since they constitute the majority
of the cortical output pathway. Layer 5 neurons are a heteroge-
neous population and project to many regions, including cortex,
thalamus, brainstem, basal ganglia, and spinal cord (Veinante and
Deschênes, 2003; Kiritani et al., 2012). Layer 5 can be further
subdivided into layers 5A and 5B, each with characteristic gene
expression, receptive field, and projections (Lund et al., 1988;
Manns et al., 2004; Anderson et al., 2010; Mao et al., 2011). Layer
5B contains a preponderance of corticospinal neurons (Anderson
et al., 2010) that innervate the muscolotopically organized spinal
cord (Levine et al., 2012), which in turn orchestrates the syn-
ergistic activation of the musculature to achieve movements in
stereotyped directions (Bizzi et al., 2002). In the primate corti-
cospinal tract, there is also a group of corticomotoneuronal cells
that contact spinal motoneurons directly and whose cell bodies
in layer 5 are clustered within a region of motor cortex that is
hypothesized to have evolved relatively recently to control fine
movements of the distal musculature (Rathelot and Strick, 2009).
Not only are these cells likely to possess movement tuning, it is
possible that details of their tuning could be predicted based on
the motoneuron that they innervate.

Corticostriatal neurons are primarily found in layer 5A.
As with corticospinal neurons, sub-types of corticostriatal neu-
rons may have distinct movement tuning depending on their
specific projection identity. Pyramidal (PT) type corticostriatal
axons synapse in the ipsilateral striatum before continuing on
toward the spinal cord. This differentiates them from intratelen-
cephalic (IT) type corticostriatal neurons which cross the midline
to project to the striatum and contralateral cortex but do not leave
the telencephalon. IT and PT type neurons preferentially inner-
vate direct and indirect pathway neurons of the striatum, respec-
tively (Reiner et al., 2010). Corticostriatal connections are altered
by the process of learning to control a neuroprosthetic device, evi-
denced by an NMDA receptor dependent increase in coherence
beteween motor cortex and the striatum (Koralek et al., 2012).
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Neurons forming the corticospinal tract are predisposed to
possessing movement tuning, but other descending pathways
such as the rubrospinal tract are also heavily involved in motor
control (Lemon, 2008). Nor is the corticospinal tract exclusively
motor-related, with only 55% of primate corticospinal neurons
directly facilitating muscle activity (Lemon et al., 1986). Spinal
motoneurons receive synaptic input from many sources, meaning
that even direct corticomotoneurons have a variable influence on
the muscles they innervate (Yanai et al., 2007). Rodents lack corti-
comotoneurons, making the contribution of the network of spinal
interneurons to movement tuning a further consideration (Levine
et al., 2012). The complexity of descending motor pathways pro-
vides an explanation for the observation that activity in motor
cortex can become uncoupled from movement during sleep,
motor imagery, or control of brain machine interfaces (Schieber,
2011). In fact, the process of learning to control a brain–machine
interface causes widespread changes in the preferred direction
tuning of neurons throughout the motor cortex (Ganguly et al.,
2011), with the greatest increase in performance coming from
neurons in the supplementary motor area (Carmena et al., 2003).

CONCLUSIONS AND FUTURE DIRECTIONS
Movement tuning is a well-documented yet controversial prop-
erty of motor cortex that has been successfully exploited for
direct cortical control of neural prostheses (Hochberg et al., 2006;
Velliste et al., 2008). The deep layers of motor cortex contain
the most useful signal for these brain machine interfaces (Parikh
et al., 2009) and are also the site from which movements can most
easily be evoked by stimulation (Young et al., 2011). Neurons in
layer 5 form outputs to a variety of structures involved in motor
control, including the striatum, brain stem, and spinal cord. The
advent of new experimental tools for combined anatomical and
physiological circuit tracing based on retrograde transmission
of Cre-fused wheat germ agglutinin (Gradinaru et al., 2010) or
modified rabies virus (Wickersham et al., 2007; Wall et al., 2010;
Apicella et al., 2012; Kiritani et al., 2012) has made it possible
to label neurons based on projection identity. Although some of
these tools are currently used primarily in mice, efforts are under-
way to apply them in primate models (Diester et al., 2011). This
will make it possible to both monitor and manipulate the activity
of specific motor output pathways (e.g., corticospinal) to iso-
late their contribution to motor behavior (Figure 1). It will then
become possible to identify the upstream circuit mechanisms that
enable flexible control of these pathways during motor imagery
or behavior. These experiments will dramatically enhance our
understanding of the cortical motor system and the nervous
system as a whole.

FIGURE 1 | Strategies for targeting neurons in motor cortex based on

their projection identity. (A) Injecting a retrograde tracer or viral vector
into a region downstream of motor cortex (for example, the spinal cord) will
label neurons in motor cortex that project to that area. (B) By expressing
optogenetic activators such as Channelrhodopsin-2, neurons of the targeted
projection class can be selectively activated while resulting movements are
measured. Motor maps generated by stimulating specific projection classes
can be tested for topographies of evoked movement direction and compared
with maps from other projection classes. (C) Alternatively, the activity of
labeled neurons can be measured while an experimental animal makes
voluntary movements in different directions. This could be accomplished
either with electrical recordings or by imaging genetically encoded calcium
or voltage indicators. Again, preferred movement directions can be examined
at different cortical locations for neurons in a given projection class, and
different projection classes can be compared by performing retrograde
injections in multiple structures targeted by cortical output neurons.
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