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Recovery from stroke depends on the ability of surviving 
neural circuitry to reorganize and compensate for the loss 

of damaged regions.1,2 Cortical regions that are in close prox-
imity to the stroke or are functionally related to the damaged 
region are well positioned for this type of vicarious function, 
particularly after small strokes.3,4 For example, destruction 
of the mouse forelimb sensory cortex by targeted stroke can 
cause a new sensory representation to emerge in the territory 
normally occupied by forelimb motor cortex.5,6 It remains 
unclear, however, whether the motor cortex can maintain its 
primary role in addition to shouldering the computational 
burden previously carried by the somatosensory cortex. The 
annexation of motor cortex by new sensory representations 
may require the underlying circuitry to abandon its original 
function, causing the motor map to be displaced. This type 
of maladaptive reorganization has been proposed as a mecha-
nism for the secondary deficits that appear several weeks after 
stroke in some patients.7,8

Cortical reorganization persists for months after stroke,9 
but longitudinal experiments in animal models have been con-
strained by the limitations of intracortical electric stimulation. 
We made use of transgenic channelrhodopsin-2 mice10 that 

express a light-sensitive cation channel in layer 5 cortical out-
put neurons11 to perform light-based mapping (LBM) of motor 
cortex.12 LBM has the advantages of being faster and less 
invasive than electrode-based mapping12 and can be repeat-
edly combined with intrinsic signal imaging13 of somatosen-
sory representations in cranial window preparations. Here, we 
present the first longitudinal study of combined sensory and 
motor cortical reorganization after strokes targeted to mouse 
forelimb sensorimotor cortex.

Materials and Methods
For additional details, please see online-only Data Supplement.

Animals and Surgery
Animal protocols were approved by the University of British 
Columbia Animal Care Committee. Channelrhodopsin-2 
transgenic mice were implanted with a cranial window over the 
right sensory-motor cortex and allowed to recover for 2 months 
before being used in mapping experiments. The majority of cranial 
windows remained viable for the full extent of the experiment 
(17 of 24 mice). Each group contained 4 male and 4 female mice 
(except motor stroke group: 5 males, 3 females). Age at mapping 
onset was consistent between groups (sensory 148.2±10.5 days, 
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motor 139.1±16.9 days, and sham 133.75±11.8 days; P=0.72; 
ANOVA).

Intrinsic Optical Signal Sensory Mapping
We conducted 20 to 40 imaging trials per experiment, each com-
prising 15 frames collected over 1.5 s preceding a tactile stimulus  
delivered to the contralateral forelimb by a piezoelectric device (1 
s of 5 ms square pulses at 100 Hz) and 15 frames collected during 
and after the stimulus. Images were analyzed using an ImageJ plu-
gin described previously14 to create an image of mean percentage 
change in 635 nm light reflectance thresholded at 33% of maximal 
response.

Light-Based Motor Mapping
LBM methodology has been described in detail.12,15 Briefly, we tar-
geted a 473-nm laser beam to a grid of cortical sites in semirandom 
order. Evoked forelimb movement amplitudes were measured using 
laser range finders. This process was repeated 3 times to obtain a 
mean value for each pixel of the map.

Photothrombotic Stroke
To generate photothrombotic strokes, mice were injected with 1% 
Rose Bengal in phosphate-buffered saline (100 mg/kg IP).16 A cir-
cular region of cortex 1 mm in diameter was illuminated with the 
arc lamp of an epifluorescence microscope (10 mW green light, 10× 

objective, numerical aperture=0.3) for 13 minutes. Sham mice were 
injected with saline only and illumination was targeted to sensory 
forelimb (sFL).

Histology
Infarct volumes were calculated using ImageJ by measuring the area 
of the infarct in all coronal sections where it was visible and multiply-
ing this value by the distance between sections.

Statistical Analyses
Data were analyzed using Graphpad Prism. The specific tests used are 
stated alongside all probability values reported.

Results

Longitudinal LBM of Sensory and Motor  
Forelimb Representations
Twenty-four Thy1-channelrhodopsin-2 transgenic mice10 were 
implanted with cranial windows that covered sensorimotor 
cortex of the right hemisphere (5 mm×5 mm, extending 1 mm 
across the midline and 2.5 mm anterior and posterior from 
bregma; Figure I in the online-only Data Supplement). Three 
baseline motor and sensory mapping sessions were performed 

Figure 1. Representative 
examples of sensorimotor 
reorganization. A, Experimental 
timeline; (B) paired forelimb 
motor (top) and somatosensory 
forelimb and hindlimb (bot-
tom) maps from a representa-
tive baseline time point (first 
column), followed by maps 
from time points after sensory-
targeted stroke. All motor maps 
are the mean of 3 repetitions 
performed in a single experi-
ment. Right, Epifluorescence 
image of a channelrhodopsin-
2-yellow fluorescent protein 
expressing coronal section with 
an infarct in somatosensory 
cortex. C, Maps generated 
before and after a motor-
targeted stroke and sham (D) 
stroke. Note that maps repre-
sent motor output scaled con-
sistently for each animal, with 
individual differences in motor 
excitability reflected between 
animals.
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for each animal (Figure 1A). Contralateral motor forelimb 
(mFL) maps were spatially stable, with a mean weekly shift in 
center of gravity of 0.42±0.22 mm (n=24 mice, all values±SEM 
unless otherwise stated). Contralateral sFL maps exhibited 
a similar weekly shift in center position during the baseline 
period (0.42±0.09 mm; n=14 mice).

One day after the third baseline mapping session, a pho-
tothrombotic infarct was targeted to either sFL (sensory 
stroke group; Figure 1B) or a nonoverlapping portion of 
mFL (motor stroke group; Figure 1C). Infarct volume was 
comparable for the sensory- and motor-targeted groups 
(0.18±0.07 versus 0.23±0.06 mm3, respectively; P=0.54;  
t test), with sensory-targeted infarcts located more laterally 
than motor-targeted infarcts (2.71±0.27 versus 1.87±0.15 
mm from midline; P=0.0194; t test). No differences were 
observed in infarct volume between females and males 
(0.20±0.04 versus 0.23±0.07 mm3; n=6 and 7, respectively; 
P=0.77; t test).

Spatial Properties of Sensorimotor Reorganization
As in previous studies,6 strokes targeted to sFL caused the 
reorganized sFL map to shift medially toward motor cortex 
(Figure 2A and 2C). Despite its occupation by the new sFL 
map, mFL was able to maintain its position after sensory 
stroke (Figure 2B). Similarly, strokes in mFL did not cause 
a subsequent shift of the neighboring sFL map (Figure 2B 
and 2C). Sham strokes caused no reorganization of senso-
rimotor cortex (Figure 2A–2C). Although spatial reorga-
nization was largely confined to the stroke-damaged map, 
sFL displacement after sensory stroke was correlated with 
increased mFL displacement (Figure 2D). Displacements 

of sFL and mFL were not correlated with infarct volume 
or with the extent of overlap between sensory and motor 
maps, defined by the prestroke separation between their 
centers of gravity.

Changes in Sensorimotor Excitability After Stroke
To assess the responsiveness of the sensorimotor cortex to 
somatosensory stimuli, intrinsic optical signal values were 
measured in nonoverlapping regions of interest defined by the 
baseline positions of sFL and mFL. Vibrotactile stimulation 
of the contralateral forepaw caused an intrinsic optical sig-
nal response in sFL and to a lesser extent in mFL (Figure 3). 
These sensory responses were unaffected by sham- or motor-
targeted strokes (Figure 3). Strokes targeted to sFL, however, 
caused a persistent deficit in sensory responses within somato-
sensory cortex (Figure 3, upper left). Responses to sensory 
stimulation were initially disrupted in mFL, but returned after 
6 to 8 weeks.

To examine the effect of targeted stroke on motor rep-
resentations, each animal’s poststroke motor maps were 
normalized to their own baseline mean, aligned according 
to the position of the infarct and then averaged. Strokes in 
mFL caused a decrease in motor output from the infarct 
core (Figure 4), balanced by a substantial increase in peri-
infarct motor output not seen after sensory-targeted or sham 
strokes (Figure 4). Motor output from the immediate vicin-
ity of the stroke was significantly decreased for the first 
month after both sensory and motor strokes, but recovered 
by 6 to 8 weeks post stroke (Figure II in the online-only 
Data Supplement). Normalized map area and motor output 
after stroke were conserved overall after stroke (Figure III 

Figure 2. Map displacement 
after stroke. A, Displacement 
of sensory forelimb (sFL) center 
from its mean baseline position 
before and after sensory (blue), 
motor (orange), or sham (black) 
strokes. Asterisks signify P val-
ues (2-way ANOVA; F(2)=6.4; 
P=0.002; asterisks correspond 
to results of Bonferonni’s post 
test). B, Motor forelimb (mFL) 
displacement (2-way ANOVA; 
F(2)=9.572; P=0.0002). C, Mean 
weekly position of motor (left) 
and sensory (right) forelimb 
maps relative to their prestroke 
location. Stroke in motor cor-
tex causes an anterior shift of 
the mFL map (orange path in 
left), whereas stroke in sensory 
cortex causes a posterome-
dial displacement of sFL (blue 
path in right). D, Correlation 
between shifts in sFL and mFL. 
Error bars in this and all subse-
quent figures are SEM.
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in the online-only Data Supplement) and were not signifi-
cantly correlated with infarct volume. No significant sex 
differences were observed for changes in map area or motor 
output after stroke.

Effects of Stroke on the Integrity of Motor 
Representations
Given the modest size of the infarcts created by targeted 
photothrombosis, it is perhaps unsurprising that these small 
strokes did not cause gross changes in motor output or map 
area. Interestingly, however, we observed that motor maps 

frequently exhibited an abnormally scattered or diffuse 
structure after stroke (Figure 1). This effect was particularly 
pronounced after stroke targeted to sensory cortex (Figure 5A). 
Because such changes in map structure may not be accurately 
reflected in a map’s center of gravity (Figure 2) or overall 
motor output (Figure III in the online-only Data Supplement), 
we generated a spatial autocorrelation index (Figure 5B) for 
all motor maps by calculating the correlation between pairs 
of pixel values (movement amplitude) separated by a given 
distance. Motor maps were more diffuse after motor-targeted 
stroke and especially after sensory-targeted strokes, with a 
decrease in correlation between neighboring pixels (Figure 5C 
and 5D). Local correlation was negatively correlated with 
infarct volume for sensory strokes (Pearson r=−0.89; P=0.04; 
n=6 mice) and motor strokes (r=−0.71; P=0.04; n=8 mice).

Motor maps were generated by stimulating cortical sites 
in a random spatial order, which raises the possibility that 
decreased spatial correlation after stroke arose from fluctua-
tions in motor output over the course of an experiment. This 
was not the case, however, because performing linear regres-
sion on plots of cumulative motor output over the course 
of a mapping session revealed linear rates of motor output 
before and after stroke (Figure IV in the online-only Data 
Supplement). The diffuse structure of motor maps after stroke 
may instead be a manifestation of the ongoing reorganization 
of the underlying cortical circuitry, with the emergence of a 
new sFL map forcing mFL to either devote its neurons to a 
hybrid sensory/motor role or to become a mosaic of intermin-
gled motor and sensory neurons (Figure 6).

Discussion
We have exploited the development of a new method for 
light-based motor mapping12 to perform the first longitudinal 
study of sensorimotor reorganization after targeted stroke. 
Strokes targeted to a portion of forelimb motor cortex caused 
decreased motor output from the infarcted region that was off-
set by peri-infarct hyperexcitability, but did not affect the posi-
tion or excitability of the sFL map. Sensory stroke displaced 
sFL maps toward the center of the mFL map, causing modest 

Figure 3. Sensory responses after stroke. 
Each panel contains intrinsic signal 
responses to stimulation of the contra-
lateral forelimb at time points before and 
after stroke. Asterisks indicate P values 
from Bonferonni’s post test from a 2-way 
ANOVA of each poststroke time point 
against the baseline. sFL indicates sen-
sory forelimb; and mFL, motor forelimb.

Figure 4. Stroke causes regional changes in motor excitability. 
Poststroke maps were normalized to their baseline average by 
division, and then maps from multiple animals were aligned 
according to the location of the infarct and averaged first across 
the group and then for the 2 time points indicated. Color scale 
denotes mean percentage change in movement amplitude rela-
tive to baseline. Scale at left applies to sensory and motor stroke 
groups, scale at right applies to sham stroke. 
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secondary displacement of mFL that was strongly correlated 
with the extent of sFL shift but less than the map displacement 
seen after strokes within mFL itself. After sensory-targeted 
stroke in particular, motor map structure exhibited a diffuse 
structure that was not explained by fluctuating levels of motor 
output within an experiment. These data suggest that motor 
cortex is able to host new sensory representations without 
abandoning its cortical territory, albeit at the cost of manifest 
alterations to the motor cortical network. This pattern of reor-
ganization may differ after larger strokes, particularly if the 
entire sensorimotor cortex was destroyed.

Remapping of cortical function is closely related to behav-
ioral recovery.17–19 In particular, recovery tends to be best 
in patients20–23 or animal models19,24,25 where reorganiza-
tion occurs primarily within the perilesional cortex of the 
stroke-affected hemisphere, typically after incomplete lesions 
of motor cortex. Despite the fact that it does not produce a 
large penumbra,26 the photothrombotic model is well suited 
to studying delayed reorganization in peri-infarct cortex. We 
observed that both motor and somatosensory maps initially 
displaced from their original location typically came to occupy 

the peri-infarct region (Figure 2). After strokes in motor cor-
tex, peri-infarct cortex became hyperexcitable (ie, generated 
larger movements on stimulation than were observed during 
the prestroke baseline period), thereby preserving overall lev-
els of motor output (Figure 4; Figures II and III in the online-
only Data Supplement). Similar disinhibition of motor cortex 
occurs after stroke in human patients.27 In contrast to the 
increased peri-infarct excitability seen after strokes in motor 
cortex, sham-operated mice exhibited a uniform decrease in 
motor excitability throughout the map area (Figure 4). This 
could be because of either changes in the viability of the cra-
nial window over time or the effects of repeated anesthesia 
and stimulation of the periphery (during sensory mapping) or 
cortex (during motor mapping). The decreased excitability of 
sham mice makes the peri-infarct hyperexcitability seen after 
motor stroke even more striking. This is the first study of its 
kind involving longitudinal light-based motor mapping and 
as such it will need to be compared with future experiments 
using alternate surgical preparations or stimulation parameters 
to further address this question.

The diffuse structure of motor maps after stroke, evidenced 
by their decreased local spatial correlation (Figure 5), has not 
previously been reported. Maps may be altered by the incor-
poration of new regions of cortical output that were masked 
by inhibition before stroke.28,29 Map area remains constant 
after stroke (Figure III in the online-only Data Supplement), 
but this could reflect the addition of new, more distant regions 
to the map offsetting the loss of motor output from the area 

Figure 5. Poststroke reorganization causes motor maps to 
develop a diffuse structure. A, Representative motor maps 
obtained before and 6 weeks after a stroke targeted to sFL. 
After stroke, the map has a more scattered appearance, with 
greater variability between the amplitude of adjacent pixels. At 
right, spatial autocorrelation of representative motor map reveals 
decreased correlation between nearby pixels after stroke. B, 
Mean spatial correlations for each group. Bonferonni’s post-test 
values marked for 2-way RM-ANOVA. C, Changes in correlation 
strength between adjacent pixels after stroke. Both sensory- and 
motor-targeted stroke caused lasting decreases in local correla-
tion (2-way ANOVA; F(2)=23.9; P<0.0001; asterisks indicate P 
values from Bonferonni’s post test against the sham group).

Figure 6. Model of cortical plasticity underlying sensorimotor 
map reorganization. A, Mouse sensorimotor cortex (box outlined 
in coronal section at left) is schematized as overlapping popula-
tions of motor (orange) and sensory (blue) neurons (right). B, 
After sensory stroke, the sensory region is initially destroyed 
(left), but the overlap region (represented with mixed orange/
blue neurons) survives and expands to form the new sFL repre-
sentation in motor cortex (right). C, Strokes in motor cortex do 
not cause the motor map to expand into sensory forelimb (sFL). 
Instead, an increase in the excitability of peri-infarct neurons 
(indicated with bold lines) compensates for the partial loss of 
motor forelimb (mFL).

D
ow

nloaded from
 http://ahajournals.org by on July 2, 2019



Harrison et al  Light-Based Sensorimotor Mapping After Stroke  2305

of the infarct (Figure 4; Figure II in the online-only Data 
Supplement). Curiously, the diffuse motor map structure was 
most pronounced after strokes targeted to sensory cortex. 
This could be because of an expanded region of motor cor-
tex devoted to mixed sensory/motor function (Figure 6). After 
stroke, this region may contain more neurons performing a 
dual sensory/motor role5 or an intermingled mixture of sin-
gle-role neurons devoted solely to motor or sensory function. 
Either of these scenarios could account for the observation of 
diffuse motor map structure after stroke. Future studies could 
combine LBM with imaging of microscopic cellular structure 
and function after stroke to glean additional detail.

Strokes targeted to motor cortex caused an overall decrease 
in motor map area of ≈50% in the first week post stroke 
(Figure III in the online-only Data Supplement), but variabil-
ity within groups prevented this trend from reaching statistical 
significance. In the cortical region immediately surrounding 
the infarct, motor output was significantly diminished (Figure 
II in the online-only Data Supplement) in the first month after 
stroke and recovered to baseline levels by 2 months. Motor 
output was not completely and permanently abolished from 
the vicinity of the infarct (Figures 1 and 4), perhaps because 
the infarcts were relatively small. It is possible that these small 
infarct volumes fostered plasticity by sparing the majority of 
sensorimotor cortex; larger lesions may result in reorganiza-
tion predominantly within the contralesional hemisphere.9 
Individual microinfarcts, such as those created in this study 
(≈0.2 mm3), may go unnoticed in a human brain, which is 
3 orders of magnitude more massive than that of a mouse.30 
If scaled directly, these infarcts would still be only ≈0.7 cm3 
in a human, comparable with the lesion produced by a tran-
sient ischemic attack.31 Transient ischemic attacks are known 
to cause increased cortical excitability in the affected hemi-
sphere, which agrees with our findings.32 We chose not to cre-
ate larger infarcts because they were associated with elevated 
mortality rates; increasing the infarct size also decreases the 
amount of surviving cortex that can be studied within the lim-
ited area of the cranial window. In the future, bilateral studies 
of reorganization could take advantage of the spared hemi-
sphere to expand the mapped area.33 Performing motor map-
ping in the hours or days after stroke may also reveal greater 
reductions in motor output.34

We have demonstrated the feasibility of longitudinal senso-
rimotor mapping and characterized the spontaneous cortical 
reorganization that occurs in the absence of any intervention. 
It will now be possible to test the efficacy of preventative, 
protective, or rehabilitative therapies in the context of motor 
recovery, while monitoring the organization of sensorimo-
tor cortex. Ultimately, these optimized rehabilitation strate-
gies could be translated to humans to enhance recovery from 
stroke and other forms of brain injury.35,36
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