
Feature Article Commentary

Glial laminar cortical architecture matches
metabolic demand

Nadia A Scott1,2 and Timothy H Murphy1,2,3

1Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia,
Vancouver, British Columbia, Canada; 2Brain Research Centre, University of British Columbia, Vancouver,
British Columbia, Canada; 3Department of Cellular and Physiological Sciences, University of British
Columbia, Vancouver, British Columbia, Canada

Journal of Cerebral Blood Flow & Metabolism (2011) 31, 793–794; doi:10.1038/jcbfm.2010.205; published online 8 December 2010

The link between increased neural activity and cerebral
blood flow is well established (Roy and Sherrington,
1890); yet, the mechanism by which blood flow is
matched to neuronal activity both spatially and tempo-
rally is unclear. Based on their morphology, gray matter
(protoplasmic) astrocytes are ideally situated to translate
regional synaptic activity to hyperemia (increased flow)
as they extend processes that envelop both synapses
and vasculature (reviewed in Iadecola and Nedergaard,
2007). Indeed, evidence from in vitro and in vivo two-
photon imaging has suggested that stimulus-induced
elevations in astrocyte intracellular calcium are posi-
tioned to modulate vascular tone (Zonta et al, 2003;
Takano et al, 2006; Mulligan and MacVicar, 2004;
Winship et al, 2007). These local interactions are
purported to occur at the astrocytic endfoot–blood
vessel interface (reviewed in Iadecola and Nedergaard,
2007). Regionally, the spatial organization of astrocytes
and vasculature should also have implications for
matching blood flow to activity. While previous works
have examined the interrelationships between astro-
cytes and microvasculature across cortical lamina, these
studies have been conducted using histology and thus
may not always faithfully represent the living tissue
(White et al, 1981; Tsai et al, 2009). The present work of
McCaslin et al (2011) has taken an important step to
extend these findings in the live murine brain.

Using in vivo two-photon imaging, the authors
found that the density of astrocytes showed distinct

peaks at 40 to 60 and 440 to 500 mm below the
cortical surface, corroborating an earlier report (Tsai
et al, 2009). Likewise, the density of capillaries
mirrored that of astrocytes, reaching similar peaks at
30 to 40 mm and again at 500 mm; moreover, the
average distance between astrocytes and capillaries
decreased with increasing cortical depth. This,
together with evidence from Tsai et al (2009), who
found that neuronal density peaks at 600 mm below
the cortical surface, suggests that this columnar
depth carries the highest metabolic load. Indeed, it
has been recently reported that the fastest changes in
dilation occur in diving arterioles and capillaries
that are located at this cortical depth (Tian et al,
2010). Both experimental data (Tian et al, 2010) and
models (Faraci and Heistad, 1990) have suggested
that dilation of local arterioles is accompanied by
temporally delayed dilation in upstream arteries.
Gap junction-mediated communication between as-
trocytes has been implicated in the upward propaga-
tion of vasodilating signals from active neurons in
the parenchyma to pial arteries (Xu et al, 2008).
In support of a functional role for an astrocytic
network in conducting hemodynamic signals,
McCaslin et al (2011) confirm that a syncytium
of astrocytes is in contact with all blood vessels
below the glia limitans.

The laminar variations in astrocyte–vasculature
interactions revealed by McCaslin et al (2011) may
have important implications for the spatial and
temporal matching of blood flow to activity within
specific cortical layers. However, delineation of the
relative contribution of distinct neuronal popula-
tions (reviewed in Cauli and Hamel, 2010) versus
astrocytes to hemodynamic responses will require
further exploration, perhaps with new optical tools
to selectively regulate neuronal and astrocytic activ-
ity (Gradinaru et al, 2010).
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