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Liu Z, Otsu Y, Vasuta C, Nawa H, Murphy TH. Action-
potential-independent GABAergic tone mediated by nicotinic
stimulation of immature striatal miniature synaptic transmission. J
Neurophysiol 98: 581–593, 2007. First published June 6, 2007;
doi:10.1152/jn.00768.2006.—Stimulation of presynaptic nicotinic
acetylcholine receptors (nAChRs) increases the frequency of minia-
ture excitatory synaptic activity (mEPSCs) to a point where they can
promote cell firing in hippocampal CA3 neurons. We have evaluated
whether nicotine regulation of miniature synaptic activity can be
extended to inhibitory transmission onto striatal medium spiny pro-
jection neurons (MSNs) in acute brain slices. Bath application of
micromolar nicotine typically induced 12-fold increases in the fre-
quency of miniature inhibitory synaptic currents (mIPSCs). Little
effect was observed on the amplitude of mIPSCs or mEPSCs under
these conditions. Nicotine stimulation of mIPSCs was dependent on
entry of extracellular calcium because removal of calcium from
perfusate was able to block its action. To assess the potential physi-
ological significance of the nicotine-stimulated increase in mIPSC
frequency, we also examined the nicotine effect on evoked IPSCs
(eIPSCs). eIPSCs were markedly attenuated by nicotine. This effect
could be attributed to two potential mechanisms: transmitter depletion
due to extremely high mIPSC rates and/or a reduction in presynaptic
excitability associated with nicotinic depolarization. Treatment with
low concentrations of K� was able to in part mimic nicotine’s
stimulatory effect on mIPSCs and inhibitory effect on eIPSCs. Cur-
rent-clamp recordings confirmed a direct depolarizing action of nic-
otine that could dampen eIPSC activity leading to a switch to striatal
inhibitory synaptic transmission mediated by tonic mIPSCs.

I N T R O D U C T I O N

Miniature transmitter release results from the constitutive
low-level release of individual vesicles of neurotransmitter.
Since the 1950s this form of synaptic transmission was thought
to be a reflection of a leaky evoked release mechanism, and it
was not clear whether it had a function of its own (Otsu and
Murphy 2003). Previous studies suggest that miniature release
(mini) can reflect both the local chemistry of synapses (Murphy
et al. 1994) as well as the network properties of neurons (Carter
and Regehr 2002; Sharma and Vijayaraghavan 2003). Al-
though mini rates are typically low, recent data describe how
nicotine stimulation of nicotinic acetylcholine receptors
(nAChRs) can elevate the frequency of excitatory glutamater-
gic minis to levels that can affect network behavior (Sharma
and Vijayaraghavan 2003).

Acetylcholine (ACh) differs from other neuromodulators
such as dopamine (DA), noradrenaline, and metabotropic glu-
tamate receptor agonists in that it can affect presynaptic cal-
cium levels through direct calcium influx via nAChRs and/or
activation of voltage-sensitive calcium channels (VSCCs) re-
sulting from depolarization induced by Na� influx through
nAChRs (Dani 2001; Gray et al. 1996). This nAChR-mediated
increase in presynaptic calcium is then associated with the
increase in minis (Gray et al. 1996; Guo et al. 1998; Kiyosawa
et al. 2001; Lena and Changeux 1997; Sharma and Vija-
yaraghavan 2003). In striatum, multiple nAChR subunits are
expressed (Champtiaux et al. 2003; Wada et al. 1989; Zoli et
al. 2002), and evidence suggests that presynaptic nAChRs
regulate the secretion of DA from substantia nigra DAergic
terminals (Champtiaux et al. 2003; Marshall et al. 1997; Zhou
et al. 2001). However, relatively little is known about the effect
of nicotine on the release of fast transmitters such as glutamate
and GABA in the striatum (Kita 1996; Koos and Tepper 2002;
Misgeld et al. 1980).

About 90% of total striatal neurons are medium spiny
neurons (MSNs) that employ GABA as a neurotransmitter
and project to other regions such as substantia nigra pars
reticulata and globus pallidus. MSNs receive inhibitory and
excitatory afferents predominantly from GABAergic inter-
neurons and from the cerebral cortex and thalamus, respec-
tively (for review, see Wilson 2004). Connections between
MSNs are rare (Koos et al. 2004), especially in mature
striatum, although recently more direct evidence with dual
patch-clamp recording have demonstrated connections be-
tween MSNs in ventral striatum of relatively mature brains
(Taverna et al. 2004). It is possible that GABA- or gluta-
matergic transmission onto MSNs is presynaptically modu-
lated by ACh released from cholinergic interneurons. Given
the existence of nAChRs on presynaptic terminals that
innervate MSNs and the nAChRs’ unique ability to increase
presynaptic calcium concentration, we determined whether
miniature synaptic activity in the striatum might be regu-
lated by this mechanism. We report that nicotine can pro-
duce almost 12-fold increases in striatal GABAergic min-
iature inhibitory synaptic currents (mIPSCs) but not gluta-
matergic miniature excitatory postsynaptic currents
(mEPSCs) through a mechanism associated with calcium
entry through calcium-permeable nicotinic receptors. These
high rates of minis stimulated by nicotine dampen evoked
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IPSCs (eIPSCs), suggesting a transition to a mode of sig-
naling involving tonic mIPSC-mediated inhibition.

M E T H O D S

Slice preparation

Wistar rats (postnatal day 8–15) were anesthetized with halothane
and decapitated. All animals used in this project were cared for in
accordance with regulations of the Canadian Council on Animal Care.
Coronal slices of striatum (250–300 �m thickness) were prepared in
an ice-cold modified artificial cerebrospinal fluid (ACSF) and incu-
bated at room temperature for �1h in normal ACSF. The composition
of normal ACSF was as follows (in mM): 119 NaCl, 2.5 KCl, 2.5
CaCl2, 1.3 MgSO4, 1.0 NaH2PO4, 26.2 NaHCO3, and 11 glucose (pH
7.4 with 95% O2-5% CO2). In the modified ACSF, NaCl was
substituted for 200 mM sucrose, and the solution contained 0.8 mM
CaCl2, 4 mM MgSO4, and 1 mM kynurenate.

Electrophysiology

MSNs in striatum were visualized using a water-immersion objec-
tive lens (Olympus �60) and were identified by shape and size (ovoid
cell body with 8–14 �m major axis). A whole cell patch electrode
(�4 M�) was used to record synaptic responses from these neurons
in a voltage- or current-clamp mode with an Axopatch 200B. Series
resistance was compensated 60–70%. The cells were clamped at 0 or
�65 mV to record inhibitory synaptic currents or excitatory synaptic
currents, respectively. To record mIPSCs, the recording solution
included 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 �M), D,L-
2-amino-5-phosphonovaleric acid (APV; 100 �M) and tetrodotoxin
(TTX; 1 �M). Spontaneous and evoked IPSCs (sIPSCs and eIPSCs)
were recorded in the absence of TTX. A bipolar tungsten electrode
was put in the striatum (�200 �m from a recording cell) to induce
eIPSCs. Current pulses were delivered through the electrode for 150
�s at a range from 100 to 500 �A (1.1–1.8 times higher than threshold
intensity). To record mEPSCs, bicuculline methiodide (BMI; 20 �M)
and 1 �M TTX were added to the recording solution. For voltage-
clamp recording, the routinely used the internal solution contained (in
mM): 123 Cs-methane sulfonate, 10 HEPES, 7.5 CsCl, 0.2 EGTA, 8
NaCl, 4 MgATP, 0.3 Na2GTP, 5 QX314-Cl, and 5 Biocytin-Cl. In one
set of experiments where constant negative holding potentials were
used to assess mIPSCs as inward currents, we used a modified internal
solution of the following composition (in mM): 130 CsCl, 10 HEPES,
0.2 EGTA, 4 MgATP, 0.3 Na2GTP, 5 QX314-Cl, and 5 Biocytin-Cl.
The pH of the two internal solutions was adjusted to 7.2 by CsOH and
the osmolarity was adjusted to 290 mosM. The liquid junction
potential was not corrected. When responses were monitored with
current-clamp mode, the composition of internal solution was changed
as follows (mM): 129.4 K-gluconate, 10 HEPES, 11.1 KCl, 0.02
EGTA, 4 NaCl, 3 MgATP, and 0.3 Na2GTP (pH adjusted to 7.25
using KOH). To set the equilibrium potential for chloride to –58 mV
as observed in MSNs (Jiang and North 1991), the recording bath
solution was changed as follows (mM): 125 NaCl, 2.5 KCl, 2.5 CaCl2,
1.5 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, and 9 glucose (pH 7.4 with
95% O2-5% CO2) (Koos and Tepper 1999). Recordings were all
performed at room temperature. Nicotine was applied with a local
perfusion system equipped with a Y-shape tube or bath application.
Various drugs to modify effects of nicotine were applied �10 min
before agonist treatment. In the case of bath application, it takes �2
min to reach drug solution into the recording chamber from its
reservoir. In figures, time 0 indicates the time at which the reservoir
was changed, not the time of bath equilibration. Signals were digitized
at 5 kHz and filtered at 2 kHz (low-pass Bessel filter). Drugs used
were obtained from the following sources: TTX, nicotine tertrate,
APV, BMI, mecamylamine (MEC), methyllycaconitine (MLA), and

SKF38393 from Sigma; CNQX from Tocris; QX-314-Cl from
Alomone labs; (�) SCH23390 and (�) sulpiride from RBI.

Histology

After recording, some slices were randomly chosen for biocytin-
staining to confirm that the recorded cells possess the characteristic
morphology of MSNs. Slices with biocytin-injected cells were fixed
with 4% paraformaldehyde in 0.1 M phosphate buffer (PB) for �2 h
at 4°C and soaked in 30% sucrose in phosphate-buffered saline (PBS)
for another 12 h. The tissue was frozen with dry ice and thawed twice
and then incubated for 30 min in PBS containing 0.5% H2O2 and 10%
ethanol at room temperature (r.t.) to suppress endogenous peroxidase
activity. The tissues were rinsed in PBS for 1 h and incubated in PBS
containing 1% Triton X-100 (TX) for 4 h at r.t. After washing for 1 h,
they were incubated in a 0.5% TX in PBS containing avidin-biotin-
peroxidase complex (ABC solution; ABC Elite, Vector Laboratories)
for 3 h at r.t. Visualization of biocytin-injected cells was achieved
with 0.05M Tris-HCl buffer (pH 7.4) containing 3,3�-diaminobenzi-
dine tetrahydrochloride (DAB; 0.05%) and 0.01% H2O2.

Data analysis

Spontaneous and miniature synaptic currents data were analyzed
with AxoGraph 4 and pClamp 9 (Axon Instruments). An event was
detected with a criterion of a threshold �3�SD of baseline noise and
�3- to 5-pA amplitude. The detected mIPSCs were then manually
inspected to exclude false events caused by an artificial source such as
environmental noise. In young neurons, the frequency of mIPSCs
could be very low leading to massive fold changes in mIPSC fre-
quency (�100-fold was observed at times) after addition of nicotine.
These very large fold changes in frequency made it difficult to assess
the pharmacology of nicotine and its mechanism. Therefore only cells
that had a basal frequency of mIPSCs between 0.1 and 2 Hz were used
to assess the pharmacology and mechanism of nicotine effects. To
evaluate the change of GABAergic activity, the percentage increase in
mIPSC frequency was routinely used and was determined by com-
paring the average number of events per bin (1 bin � 20 s) during the
last 2 min of the control period with the average during the peak of the
nicotine effect in which 3 bins (before, peak, and after) were averaged.
Data from cells with unstable baseline firing (�15% fluctuation
during the last 3 min of the control period) are not included. The
average values are provided as means 	 SE. The differences in the
mean peak frequency were tested by Mann-Whitney U test.

R E S U L T S

Effect of nicotine on membrane excitability in MSNs

The effect of nicotine on MSNs in striatal slices from 8- to
15-day rat pups was studied to determine whether nAChR
stimulation affects their excitability. MSNs were identified by
their unique electrophysiological and morphological character-
istics. MSNs had a relatively hyperpolarized resting potential
(�76.3 	 1.4 mV, n � 11), inward rectification (Fig. 1A, a and
b), and spiny dendrites (Fig. 1Ac). These properties are con-
sistent with previous work (Kawaguchi 1992; Kawaguchi et al.
1989; Tepper et al. 1998). To assess potential effects of
nicotine on MSNs, we performed recordings in current-clamp
mode to determine whether nicotine led to changes in MSN
excitability. For these experiments, we used intracellular Cl�

concentrations (15 mM), which correspond to a –58-mV re-
versal potential for chloride that is consistent with previously
reported values from intracellular recordings (Jiang and North
1991; Koos and Tepper 1999). Addition of 20 �M nicotine via
bath application under current clamp led to an increase in noise
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and a modest depolarization of MSNs (3.17 	 0.3 mV; n � 3;
Fig. 1Ba), but action potentials (APs) were not induced. This
increased noise was blocked in the presence of GABAergic (20
�M BMI) and glutamatergic (10 �M CNQX and 100 �M
APV) receptor blockers. However, the modest depolarization
persisted (Fig. 1Bb). The noise was thought to be induced by an
increase in GABA or glutamate release, whereas the depolar-
ization could be induced by a direct postsynaptic effect of
nicotine on MSNs.

To assess whether nicotine altered spike threshold, MSNs
were held at resting potential in current-clamp recording mode,
and depolarizing pulses that induced three to five spikes with a
first-spike latency of 100–120 ms were injected at 0.1 Hz. Bath
application of 20 �M nicotine caused membrane depolariza-
tion and a shortened first-spike latency (113.3 	 11.6 ms under
control condition vs. 82.0 	 3.3 ms in the presence of nicotine;
n � 3; Fig. 1C, a and c) and a slight increase in spike number
with threshold depolarizing pulses (4.1 	 1.3 spikes under
control condition vs. 5.0 	 1.1 spikes in the presence of

nicotine; n � 3 cells; Fig. 1Cb). In summary these experiments
indicated a limited effect of nicotine on the excitability of
MSNs.

Effect of nicotine on miniature synaptic events

In current-clamp experiments, we detected an inhibition of
nicotine-induced noise by glutamatergic and GABAergic an-
tagonists (Fig. 1B, a and b). To determine whether this effect
was induced by presynaptic GABAergic or glutamatergic ac-
tivity, we monitored miniature synaptic events under voltage-
clamp recording mode. Miniature inhibitory postsynaptic cur-
rents (mIPSCs) were recorded as outward currents at a holding
potential of 0 mV in the presence of CNQX (10 �M), APV
(100 �M), and TTX (1 �M; Fig. 2Aa). mIPSCs were abolished
by addition of BMI (20 �M), a GABAA receptor antagonist
(data not shown). Thus the pharmacological data indicated that
both Y-tube (n � 8/8) or bath (n � 13/13) application of 20
�M nicotine results in a robust increase in mIPSC frequency.

* *****
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FIG. 1. Effect of nicotine on membrane potential and excitability in medium spiny neurons (MSNs). A: characteristic membrane properties and morphology
of a MSN. Aa: traces show individual voltage responses to series of 400-ms current pulses from �100 pA with 20-pA increasing current steps. Ab: relationship
between injected current and steady-state voltage responses are plotted. Note the inward rectification of MSNs. Ac: example of a MSN stained after recording.
The scale is 10 �m. B: nicotine (20 �M) directly depolarizes MSNs in current-clamp mode. Ba: membrane depolarization and increased noise were observed
during application of 20 �M nicotine under normal conditions. Bb: membrane depolarization was not blocked, but increased noise was decreased in the presence
of glutamate [10 �M 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX) and 100 �M 2-amino-5-phosphonovaleric acid (APV)], and GABA [20 �M bicuculline
methiodide (BMI)] receptor blockers. Although 20 �M nicotine depolarized the neurons in current-clamp mode, it failed to produce action potentials as the firing
threshold for MSNs was positive to –35 mV. C: minimal change in excitability after nicotine treatment. To assess changes in excitability, we applied depolarizing
injections of current through the recording electrode during a control period or during the application of 20 �M nicotine. Ca: example of 20 �M nicotinic effect
on membrane potential and spike latency. Nicotine depolarized the membrane potential by only a few millivolts, which was measured by averaging membrane
potential for 3 s before current injection (filled circles) and shortened the 1st spike latency, which was the time between onset of current injection and the peak
of the 1st action potential (white circles). Raw traces of stimuli 10 and 20 are shown in Cc. Cb: during nicotine application, a small increase in the number of
spikes induced by each current injection was detected. Cc: 2 traces, before (10; gray) and during nicotine (20; black) application are superimposed. Asterisk,
position of action potential in trace 20. Note the 1st spike latency is shortened and the resting membrane potential was depolarized during nicotine application.
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In Fig. 2A, representative traces are shown during control and
after 1 min of 20 �M nicotine local application through Y-tube
perfusion. Use of a semi-automated mIPSC detection system
indicated an increase in mIPSC frequency � 10-fold (11.8 	
1.9-fold, n � 15 cells) with 20 �M nicotine application (Fig.
2B). The effect of nicotine was fully reversible on washout and
was concentration-dependent as shown in our data obtained
with 1 and 100 �M nicotine (Fig. 8Bb and supplementary
Fig. 11).

In contrast to effects of noradrenaline in hypothalamus
(Gordon and Bains 2005), analysis of mIPSC amplitudes
demonstrated that nicotinic stimulation led to an increase only
in frequency and not in amplitude [Fig. 2C, n � 9/13, P 


0.01; Kolmogorov-Smirnov (KS) test]. In a subset of neurons
(4 cells), we did observe some apparent changes in amplitude.
Due to the high frequency of events in some cases apparent
increases in amplitude could be due to random summation of
mIPSCs given their relatively long time course. In addition, the
time course of mIPSCs was unaffected by nicotine treatment
(Fig. 2Ab). Nicotinic agonist effects were detected in all MSNs
examined, and cells with relatively low basal mIPSC frequency
had the largest fold increase during nicotine treatment (Fig.
2D). To make our pharmacological analysis more quantity
reliable, we did not include neurons with basal frequency 
 0.1
Hz. However, there was no significant correlation between
frequency in control and nicotine treatment (Fig. 2E).

Although 20 �M nicotine robustly elevated the frequency of
mIPSCs, the effect was selective since analysis of mEPSCs
recorded at –65 mV under pharmacological blockade of
GABAA receptors (using 20 �M BMI) and 1 �M TTX indi-
cated no significant effect of nicotine on the frequency of
mEPSCs (Fig. 3, Aa, B, and D). In addition to there being no
apparent effect on mEPSC frequency, we did not detect any
change in the mEPSC kinetics (Fig. 3Ab) or amplitude (Fig.
3C, n � 5/5, P � 0.1; KS-test), indicating a specific action of
nicotine on inhibitory presynaptic terminals.

Calcium dependency of nicotine effect on mIPSC frequency

To examine potential mechanisms of nicotine presynaptic
action at GABAergic neurons, we determined whether the
effect of nicotine on mIPSC frequency was calcium dependent.
Calcium was removed from perfusing solution and substituted
with additional Mg2� (Ca2�: 0 mM, Mg2�: 3.8 mM) because
the nicotinic receptor can be blocked by low level of divalent
ions (Adams and Nutter 1992; Liu and Berg 1999). Under this
condition, the baseline frequency of mIPSCs exhibited only a
partial dependence on the extracellular calcium (0.93 	 0.17
Hz in normal calcium ACSF compared with 0.50 	 0.06 Hz in
calcium-free ACSF, P � 0.0084, n � 6). In contrast, the effect
of nicotine on mIPSC frequency was completely abolished
(P � 0.0003, compared with that in normal calcium ACSF,
n � 8; Fig. 4, B and D) by perfusion with calcium free ACSF.
In analyzing results from this experiment, nicotine effects were
assessed by comparison to the baseline mIPSC frequency of a
2-min period immediately before nicotine application when the
slice was perfused with calcium free solution.

In a separate group of experiments, we determined whether
nicotine’s lack of an effect in 0 extracellular calcium could be
reversed by perfusion with calcium containing ACSF in the
continued presence of nicotine. As shown in supplementary
Fig. 5, MSNs were still capable of responding to nicotine when
extracellular calcium concentration was brought up to normal
levels (fold increase � 11.7 	 4.7, P 
 0.05 comparison
between basal frequency during a 2-min period before nicotine
application in calcium-free ACSF and the peak frequency
during nicotine application, n � 3). This result is not surprising
since after an initial brief desensitization, there remains a
significant amount of sustained nicotine conductance (Zhang et
al. 1994). The result also further supports the proposal that
extracellular calcium is required for nicotine to stimulate
mIPSC frequency. Importantly, the increase in mIPSC fre-
quency observed on re-addition of extracellular calcium was
much greater than the effect of altered extracellular calcium on1 The online version of this article contains supplemental data.
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FIG. 2. Nicotine increases the frequency of mIPSCs in MSNs. Aa: whole
cell voltage-clamp recording traces are shown depicting mIPSCs (in the
presence of 1 �M TTX, 100 �M APV, and 10 �M CNQX) and with addition
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The decay � was 24.7 ms. B: histogram showing increases in mIPSC frequency
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(r � �0.68, P � 0.01). E: peak mIPSC frequency as a function of basal
mIPSC frequency. Nicotine stimulates all cells to a similar frequency of
mIPSCs regardless of their basal mIPSC frequency (r � 0.096, P � 0.76).
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basal mini frequency (1.93 	 0.33-fold for change from
normal calcium to calcium-free solution; 11.7 	 4.7-fold
change in mIPSC frequency from calcium-free solution in
presence of nicotine to normal calcium solution with continued
presence of nicotine; P 
 0.05).

Because our current-clamp result indicated a postsynaptic
depolarizing effect of nicotine in MSNs, we examined the
possible involvement of VSCCs in the enhancement of mIPSC
frequency. Presumably striatal intrinsic interneurons (or other
GABAergic neurons) might also be depolarized by nicotine.
To completely shut down VSCC activity, we used high con-
centrations of CdCl2 and NiCl2 as blocking agents. Cd2� is
known to block all VSCCs, whereas Ni2� is more selective for
low-threshold VSCCs (Herrington and Lingle 1992). CdCl2
(200 �M) and NiCl2 (1 mM) were washed in for 10 min before
nicotine (20 �M) was applied in the presence of CdCl2 and
NiCl2. The results showed that despite the presence of saturat-

ing VSCC blockers nicotine was still able to induce a robust
increase in GABAergic mIPSC frequency (fold increase �
9.38 	 1.8, P � 0.60, n � 11; Fig. 4, C and D).

Pharmacological characterization of presynaptic nAChR

The preceding results suggested that GABA release was
enhanced after calcium influx through presynaptic nAChRs. In
striatum, multiple nAChR subunits are expressed (Champtiaux
et al. 2003; Wada et al. 1989; Zoli et al. 2002), including low
levels of the �7 subunit (Dominguez del Toro et al. 1994;
Seguela et al. 1993; Zoli et al. 2002). nAChR containing the �7
subunit are known to have a relatively high calcium perme-
ability in neurons (Castro and Albuquerque 1995; Seguela et
al. 1993; Vernino et al. 1994), and their resulting calcium
influx may cause an enhancement of neurotransmitter release
(Gray et al. 1996; McGehee et al. 1995; Vijayaraghavan et al.
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ence in mEPSC kinetics was observed. B: time-course analysis of
nicotine effect on mEPSC frequency. C: cumulative probability
histogram demonstrating mIPSC amplitude distribution under con-
trol conditions (641 events) and with 20 �M nicotine (676 events),
showing little effect of nicotine on mEPSC amplitude (KS-test; P �
1.00). D: group data of nicotine effect on mEPSC frequency (n �
5–6 cells). mEPSC frequency in each cell is normalized to an
average frequency measured over 2 min before nicotine application.
There was little effect of nicotine on mEPSC frequency.
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FIG. 4. Calcium-dependence of nicotinic stimulation of mIPSC fre-
quency Current traces from a striatal neuron in the presence of 1 �M
TTX, 100 �M APV, and 10 �M CNQX at 0-mV holding potential
showing the effect of nicotine under various conditions. Aa: nicotine (20
�M) enhanced mIPSC frequency during bath application. Ab: 2 traces
before and 100 s after nicotinic application from Aa are expanded. B:
pretreatment with 0 mM extracellular calcium solution blocked the
nicotine effect. C: nicotine enhancement of mIPSC frequency is indepen-
dent of voltage-sensitive calcium channel (VSCC) activation. MSNs were
treated with 20 �M nicotine in the presence or absence of a combination
of CdCl2 (200 �M) and NiCl2 (1 mM). Despite the presence of saturating
concentrations of VSCC blockers, nicotine still had a pronounced effect
on mIPSC frequency. D: average increase in mIPSC frequency by 20 �M
nicotine in the presence of normal extracellular calcium (Nic), pretreat-
ment of 0 mM calcium in the extracellular solution (Ca2� free) and
pretreatment of 200 �M CdCl2 and 1 mM NiCl2. Comparisons among
these 3 groups were made with Mann-Whitney (MW) test showing that in
the absence of extracellular calcium, nicotine loses its ability to increase
mIPSC frequency (P � 0.0003) while the cocktail of VSCCS blockers
CdCl2 (200 �M) and NiCl2 (1 mM) fails to bring down the nicotine effect
(P � 0.60).
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1992). Using different pharmacological tools, we have deter-
mined whether the nAChRs containing the highly calcium-
permeable �7 subunit contribute to the stimulation of mIPSCs
by nicotine. MLA acts noncompetitively at �7 subunit con-
taining nAChRs and 100 nM is sufficient to block these
receptors in cultured hippocampal neurons (Alkondon and
Albuquerque 1993). We first co-applied nicotine with 100 nM
MLA and observed no significant difference in the nicotine-
stimulated mIPSC frequency (robust stimulation was still in-
duced; P � 0.40, n � 6; Fig. 5, Ab and B). The low-affinity �7
agonist 10 mM choline (Alkondon et al. 1999) failed to
enhance mIPSC frequency (baseline frequency � 0.47 	 0.05,

peak frequency during choline application � 0.78 	 0.10, n �
4, P � 0.17). In contrast, the relatively nonselective nAChR
antagonist, 1 �M MEC was able to antagonize �90% of the
effect of nicotine (P � 0.019, n � 4; Fig. 5, Aa and B). The
lack of a �7 agonist effect (and only partial antagonist effect),
but the apparent requirement for calcium entry through
nAChRs (as opposed to activation of VSCCs secondary to
nicotinic depolarization) suggested the involvement of other
calcium-permeable nAChRs subtypes (see DISCUSSION).

Effect of nicotine on spontaneous inhibitory
synaptic transmission

Nicotine-stimulated mIPSCs could come from at least two
populations of striatal GABAergic terminals, from fast-spiking
(FS) intrinsic GABAergic interneurons and/or MSNs
(Czubayko and Plenz 2002; Guzman et al. 2003; Koos and
Tepper 1999, 2002; Koos et al. 2004; Tunstall et al. 2002).
Striatal FS-interneurons make multiple contacts on MSNs and
their eIPSCs are more than four times larger than the quantal
amplitude estimated from mean-variance analysis. In the case
of MSN–MSN pairs, the eIPSC and the quantal current are
similar in amplitude (Koos et al. 2004). Therefore if MSNs
were to spontaneously fire, the resulting sIPSC would have the
same size as the mIPSC. Assuming MSN input-derived sIPSCs
are largely uniquantal, we would not expect an increase in their
firing rate to be associated with an increase in sIPSC ampli-
tude. Thus we monitored nicotine-induced sIPSCs in the ab-
sence of TTX to determine whether striatal FS interneurons
were excited by nicotine and formed synapses on MSNs. We
determined whether the amplitude of MSN sIPSCs increased
(compared with mIPSCs), reflecting AP-mediated synchro-
nized release of GABA from multiple FS-neuron terminals. In
the absence of TTX, we observed a significant increase in
sIPSC frequency and amplitude during nicotine treatment (n �
3) (Fig. 6, A and B) consistent with activation of multiple
release sites on intrinsic interneuron axons. To further explore
the mechanism of the sIPSC changes, we compared the rising
phase of sIPSCs before and after nicotine application (� 20 pA
sIPSCs, n � 36 control and 53 nicotine; Fig. 6C, a and b). We
did not observe differences in kinetics or notches on the rising
phase of single sweeps (indicating asynchronous release of
quanta) (Xiang and Brown 1998), suggesting that sIPSCs
reflect synaptic vesicles that were synchronously released with
nicotine stimulation presumably from the stochastic firing of
individual FS interneurons and not MSNs (see DISCUSSION). We
believe that FS interneurons are the likely mediator of the
nicotine effect based on the previous observation that interneu-
ron-driven sIPSCs are much larger than those driven by MSN–
MSN synapses (Koos et al. 2004). The observed increase in
both sIPSC amplitude and frequency could only be attributed
to an increase in FS-interneuron firing (which make multiple
contacts with MSNs) or possibly the quantal content at each
MSN or FS neuron terminal.

To further determine the nature of sIPSCs in striatum, we
tested the sensitivity of nicotine-induced sIPSCs increase to 1
�M MEC, a nonselective nAChR antagonist. Similar to its
effect on mIPSCs, 10-min perfusion of 1 �M MEC prior to
nicotine application (in the continued presence of MEC) com-
pletely suppressed the nicotine effect on sIPSC frequency (fold
increase � 1.8 	 0.3, n � 8, P 
 0.001 as compared with
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FIG. 5. Pharmacology of nicotinic enhancement of mIPSC frequency. A:
representative traces showing nicotine effects on mIPSCs in the presence of 1
�M mecamylamine (a) and 100 nM methyllycaconitine (b). There was no
effect of 10 mM choline application (c). B: average change in mIPSC
frequency during the application of 20 �M nicotine (Nic) or 10 mM choline
(choline), and nicotine added with the antagonists mecamylamine (MEC) or
methyllycaconitine (MLA). Note: in both bars, the number of cells tested is
indicated. Statistical significance was assessed using the MW test: nicotine
(n � 15) vs. MEC (n � 4, P � 0.0191), MLA (n � 6, P � 0.40), and choline
(n � 4, P � 0.0145). *, comparison with nicotine-alone group.
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nicotine-alone group). The depolarization, observed during
nicotine application in the presence of TTX, was also
abolished by 1 �M MEC application (�75.9 	 0.9 mV for
control before MEC perfusion, �77.2 	 0.2 mV for during
MEC perfusion alone and �77.1 	 0.3 mV for during
nicotine with MEC).

Because neurons were routinely held at depolarized poten-
tials for monitoring GABAergic sIPSCs, it was possible that
nicotine treatment might also engage the phenomenon termed
depolarization-induced suppression of inhibition (DSI) that
was first observed at GABAergic synapses onto cerebellar
Purkinje cells and hippocampal CA1 pyramidal neurons (Llano

et al. 1991; Pitler and Alger 1992; Vincent et al. 1992). To rule
out this possibility, we tested the nicotine effect at –65-mV
holding potential in neurons that were filled with an intra-
cellular solution containing high chloride to better monitor
sIPSCs at negative holding potentials. Under these condi-
tions, robust enhancement of sIPSC frequency by nicotine
was still observed at a level similar (P � 0.53, n � 4, see
supplementary Fig. 4) to the routinely applied condition
(low chloride in the pipette with 0-mV holding). These
results suggest that the depolarized holding potential in our
experiments is not engaging forms of plasticity that modify
the response to nicotine.
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of 100 �M APV and 10 �M CNQX at 0-mV holding potential and with addition of 20 �M nicotine in the bath. B: cumulative probability histogram
showing the sIPSC amplitude distribution under control conditions (255 events) and with 20 �M nicotine (1,026 events) from the same cell as in A.
Significant difference in sIPSC amplitude was observed after nicotine treatment (KS-test; P 
 0.001). Ca: representative averaged records showing sIPSC
kinetics with (Nic; black trace) and without (Cont; gray trace) nicotine treatment. The Nic trace is an average of 53 sweeps that were larger than 20 pA
(amplitude). The Cont trace is an average of 36 sweeps that were randomly chosen. Cb: 2 traces in Ca are normalized to the peak current for control and
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than that in 1 �M nicotine (E). sIPSC frequency (*) was enhanced by 20 �M nicotine.
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Effect of nicotine on evoked inhibitory synaptic transmission

To assess the effects of nicotine-stimulated mIPSC and
sIPSC activity on evoked synaptic transmission, we recorded
eIPSCs from MSNs while stimulating locally within the stria-
tum under conditions that block excitatory synaptic transmis-
sion. Using this recording configuration under control condi-
tions, we were able to produce eIPSCs in response to presyn-
aptic stimulation. To assess changes in release probability, we
used three pulses of presynaptic stimulation separated by 100
ms (Fig. 6D). In the presence of 1 or 20 �M nicotine (n � 7
and 6 cells, respectively), we observed no consistent change in
paired-pulse ratio [2nd pulse amplitude/1st, pre vs. post nico-
tine application; 1.22 	 0.76 vs. 1.58 	 0.60; P � 0.26 (paired
t-test) for 1 �M nicotine; 0.73 	 0.30 vs. 1.37 	 0.56; P �
0.12 (paired t-test) for 20 �M nicotine see supplementary Fig.
3]. Application of nicotine as in previous experiments was
found to greatly elevate baseline mIPSC and sIPSC frequency
(Figs. 2 and 6A). In the presence of this enhanced GABAergic
activity, we observed a large reduction in eIPSC amplitude
(Fig. 6, D–F). Furthermore, there were apparent presynaptic
excitation failures induced by nicotine as many trials failed to
evoke synaptic response. In analyzing these data, we first
averaged all eIPSC traces (including failures). To better assess
potential effects of increased presynaptic failure after nicotine,
we also averaged responses with presumed successful stimu-
lation during control periods, during nicotine application, and
during nicotine washout (Fig. 6E). We found that even with
exclusion of failures (successful responses only), nicotine
treatment resulted in a very large decrease in eIPSC amplitude,
indicating a large inhibitory effect of nicotine on evoked
synaptic activity. Although the depression of eIPSC amplitude
partially reversed after 10 min of nicotine washout, there was
a persistent increase in response failures, indicating potential
long-lasting presynaptic effects of nicotine. To assess the
temporal relationship between nicotine effects on mini release
and evoked release, we examined the frequency of sIPSCs
(presumed minis and quanta released by spontaneous action
potentials in the absence of TTX) during the baseline period
preceding evoked release and observed a strong temporal
relationship between depression of evoked release and en-
hancement of the spontaneous events (Fig. 6F). Furthermore
comparison of nicotine stimulation data from different cells
under conditions that either isolate minis or enable evoked
release indicate that both effects are manifested quickly within
tens of seconds (see Fig. 4A for mini time course of mIPSC
elevation by nicotine). In addition to having a temporal link
between high mini rates and depression of evoked release
(when different cells are compared), we also find that 1 �M
nicotine, which produces only a small increase in mIPSC
frequency, also fails to depress eIPSCs, again suggesting par-
allels between the two processes (Fig. 6F). Although we
observed a temporal correlation between the increase in sIPSC
frequency and the depression of the eIPSCs, this correlation
does not mean that increases in mini frequency are sufficient to
block eIPSCs. Perhaps increases in mIPSC frequency and
depression of evoked activity are triggered by similar processes
such as presynaptic depolarization. We speculated that eIPSC
depression after nicotine application may be due to the presyn-
aptic depolarization that leads to sodium channel inactivation.
To determine the role of mild nicotinic depolarization in the

mechanism of eIPSC depression, we performed experiments
with low concentrations of KCl in the ACSF (2.5, 5, 10, and 15
mM) to potentially mimic nicotine action. Only in the case of
15 mM KCl did we observe effects that resembled those of
nicotine. KCl (15 mM) was iso-osmotically substituted for
NaCl in the bathing solution, and the effect on eIPSC was
assayed in the absence of nicotine and TTX. Five minutes of 15
mM KCl application was sufficient to cause complete loss of
the eIPSC (156 	 37 pA for control condition and 16 	 12 pA
for during 15 mM KCl, n � 6, P 
 0.001, Fig. 7, B and D).
Although the eIPSC was blocked, a robust nicotine effect on
sIPSC frequency was observed (fold increase � 15.4 	 3.4,
n � 5). This result suggested that nicotinic depolarization may
be sufficient to both block eIPSCs and to increase mIPSC
frequency. However, we found that the magnitude of somatic
depolarization elicited by 15 mM KCl (27.1 	 2.1 mV, n � 6,
measured in current clamp, Fig. 7A) was well above the effect
of nicotine on membrane potential. To reproduce a somatic
depolarization comparable to that induced by nicotine, lower
concentrations of KCl were tested. As compared with the
normal KCl concentration (2.5 mM), 5 mM KCl led to 7.33 	
0.67 mV (n � 3) of somatic depolarization (Fig. 7A) but did
not significantly reduce the eIPSC (177.8 	 64.1 to 144.8 	
61.5 pA, n � 8, P � 0.05) or alter mini frequency (0.66 	 0.19
to 0.92 	 0.24 Hz, n � 8, P � 0.05). With 10 mM KCl, 19.2 	
3.2 mV of somatic depolarization (n � 3) was observed with
only a marginal effect on sIPSC frequency (fold increase �
2.56 	 0.35, n � 6, P � 0.027, Fig. 7C) and no significant
effect on eIPSC amplitude (168 	 54 to 106 	 40 pA, n � 5,
P � 0.38).

Dopaminergic modulation of striatal cholinergic
enhancement of GABA activity

DA is known to modulate GABAergic transmission presyn-
aptically in the striatum (Centonze et al. 2003; Cooper and
Stanford 2001; Delgado et al. 2000; Guzman et al. 2003). To
determine whether nicotine-induced GABA release might in-
volve dopamine, we examined the effect of D1 and D2 dopa-
mine receptor antagonists. A combination of D1 and D2
receptor antagonists, SCH23390 (10 �M) and sulpiride (50
�M), were perfused for 10 min prior to adding 20 �M nicotine
in the continued presence of the antagonists. A reduction in
nicotine-stimulated mIPSC frequency was observed when
compared with the nicotine-alone group (fold increase � 3.8 	
0.7 for the dual dopamine blocker cocktail, n � 5, P 
 0.05).
To further determine the subtype of dopamine receptor,
SCH23390 (10 �M) and sulpiride (50 �M) were tested sepa-
rately. After 10-min perfusion of either SCH23390 or sulpiride,
20 �M nicotine was applied to the recording chamber. A
reduction in nicotine-induced mIPSC frequency was detected
when SCH23390 was administered alone (fold increase �
4.7 	 0.6, n � 6, P 
 0.05 for comparison with nicotine-alone
group). In contrast, perfusion of D2 receptor antagonist
sulpiride (50 �M) did not alter the mIPSC frequency increase
induced by nicotine (fold increase � 13.4 	 2.1, n � 4; P �
0.66 when compared with nicotine-alone group). Therefore the
observed enhancement of GABAergic activity may in part be
a result of elevated dopaminergic activity triggered by in-
creased nicotinic activity. To more directly test this possibility,
the D1 receptor agonist SKF38393 (10 �M) was perfused into
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the recording chamber for 10 min. To our surprise, no change
in mini frequency was observed (P � 0.77 when comparison
was made between baseline mIPSC frequency and frequency
during SKF38393 application, Fig. 8, Ae and Ba). These results
indicate that D1 receptor activity is not directly linked to
mIPSC stimulation but may somehow be permissive for the
process. A observation of the D1 receptor’s influence on
nicotine-induced GABA release has been reported in substantia
nigra (Kayadjanian et al. 1994).

To rule out direct competition between 20 �M nicotine and
DAergic antagonists, we tried the same experiment with 100
�M nicotine in the presence of 10 �M SCH23390 and 50 �M
sulpiride. Compared with 20 �M nicotine, 100 �M nicotine
induced a significantly larger increase in mIPSC frequency
(fold increase � 27.1 	 5.8, n � 5, P 
 0.01). Similar to data
acquired with 20 �M nicotine application, perfusion of D1
antagonist SCH23390 caused a decrease in 100 �M nicotine-
induced facilitation of mIPSC frequency (fold increase �
10.9 	 3, n � 5, P 
 0.05 for comparison with 100 �M
nicotine-alone group). Nevertheless, even in the presence of
both D1 and D2 antagonists, SCH23390 (10 �M) and sulpiride
(50 �M), 100 �M nicotine application led to a reduced en-
hancement of GABAergic activity as compared with 100 �M
nicotine-alone group (fold increase � 10.4 	 3.58, n � 5, P 

0.05), confirming the data obtained with 20 �M nicotine.
Overall our data suggest that D1 but not D2 receptors may
impose an indirect influence on cholinergic modulation of
striatal GABA activity.

D I S C U S S I O N

We report that nicotine can lead to a robust increase in
mIPSC frequency in striatal MSNs. The robust increase in
mIPSC frequency was induced by a calcium influx through

calcium-permeable nAChRs and not VSCCs. Interestingly,
striatal MSN mEPSCs were not enhanced in frequency or
amplitude, adding selectivity to nicotinic modulation of striatal
miniature activity in contrast to lateral geniculate nucleus
where nicotine enhances both types of miniature activity (Guo
et al. 1998).

Presynaptic nAChRs enhance GABAergic transmission in a
calcium-dependent manner

Previous work has shown evidence for the existence of
presynaptic nAChRs on GABAergic neurons. Léna and Chan-
geux (1997) concluded that nicotine-stimulated GABA release
from mouse thalamus occurs via activation of nAChRs on the
nerve terminal based on the observation that nicotinic effects
were TTX-insensitive. Nicotinic agonists also induce [3H]-
GABA release from isolated striatal synaptosomes (Behrends
and ten Bruggencate 1998). Nicotine-stimulated changes in
[Ca2�]i were observed in synaptosomes prepared from striatum
and were insensitive to VSCC blocking toxins, suggesting
calcium entry through calcium-permeable nAChRs (Nayak et
al. 2001). These reports are consistent with our observation that
mIPSC frequency in striatum was enhanced by nicotine in a
TTX-insensitive and VSCC-independent manner. Preliminary
experiments using blockers of intracellular calcium stores in-
cluding ryanodine, cyclothiazide, or thapsigargin had no effect
on nicotine stimulated mIPSC frequency. Positive control ex-
periments with caffeine are not feasible because caffeine has
been shown to block GABAergic activity in hippocampal
slices (Taketo et al. 2004), consistent with our results (data not
shown). In contrast to these studies, Sharma and Vijayaragha-
van (2003) demonstrated that nicotine-enhanced mEPSC fre-
quency and amplitude in CA3 pyramidal neurons resulted from
calcium release from a ryanodine-sensitive store after calcium
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FIG. 7. Effect of low concentrations of KCl on
sIPSCs and eIPSCs. Experiments were performed on
striatal MSNs perfused with artificial cerebrospinal
fluid (ACSF) containing 100 �M APV and 10 �M
CNQX. A: membrane potentials were monitored at
current-clamp mode in MSNs with 2.5, 5, 10, or 15
mM KCl. A stable membrane potential was 1st ob-
tained for 10 min before altering KCl. The low KCl-
containing ACSF was washed in 5–10 min until the
membrane potential stabilized. B: example traces
showing the effect of 15 mM KCl on sIPSC (Ba) and
eIPSC (Bb). The stimulation scheme in Bb is the same
as in Fig. 6. C: group data demonstrating that despite
the large depolarization caused by 10 mM KCl, a
robust enhancement in sIPSC frequency does not occur
until 15 mM KCl. D: group data showing the eIPSCs
diminishing with increasing concentration of KCl.
Note: these observations were made in the absence of
TTX and comparisons were made between elevated
KCl group and normal KCl group.
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influx through �7-type �Bgt-sensitive nAChRs on mossy fiber
terminals. Large terminals such as mossy fibers contain �Bgt-
sensitive (�7) nAChRs that desensitize rapidly (Couturier et al.
1990; Zhang et al. 1994). This recruitment of calcium stores
would then amplify and prolong the enhanced miniature syn-
aptic activity. In contrast, in relatively smaller terminals like
GABAergic interneurons in striatum (Kubota and Kawaguchi
2000), accumulation of calcium in the terminals caused by a
continuous calcium influx via non-�7 nAChRs could be suf-
ficient to induce the pronounced elevation in mIPSC fre-
quency.

Possible subtypes of presynaptic nAChRs

Several nAChRs subunits (�2–7, �2–4) are found in the
mouse and rat striatum (Champtiaux et al. 2003; Nayak et al.
2001; Zoli et al. 2002). Although this suggests that these
subunits are on presynaptic terminals within the striatum, it is
not clear which cell types contain these subunits because a
heterogeneous group of presynaptic terminals is also present
including inputs from extrinsic DAergic and glutamatergic
neurons and intrinsic cholinergic and GABAergic neurons.
Champtiaux et al. (2003) and Zoli et al. (2002) showed �6 and

�3 subunits of nAChRs were located on DA terminals and �4
and �2 subunits were both expressed on DA terminals and
non-DA cells or terminals. No evidence was found for �7
subunits on GABAergic neurons.

Functional nAChRs have been shown on striatal glutamate
terminals in vivo (Garcia-Munoz et al. 1996) and in vitro
(Kaiser and Wonnacott 2000; Wonnacott et al. 2000). Kaiser
and Wonnacott (2000) suggest that these striatal nAChRs
contain �7 subunits. If sufficient numbers of �7 nAChRs are
on glutamatergic terminals, we should have detected an en-
hancement of mEPSC frequency by nicotinic agonist. How-
ever, because adult rats were used in the experiments men-
tioned in the preceding text, it is conceivable that we did not
detect nAChRs responses of �7 pharmacology because we
used slices prepared from young rats. However, the rapid
desensitization of �7-containing nAChRs makes it difficult to
exclude their involvement in mEPSC enhancement by nicotine
application.

Our observations with nicotinic reagents suggest that
GABAergic interneurons express nAChRs coupled to mIPSC
stimulation that are likely composed of non-�7 subunits be-
cause neither an �7-selective antagonist MLA, nor agonist,
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mIPSCs. The perfusate contains: 20 �M nicotine alone (Aa), 20 �M nicotine �10 �M SCH23390 (Ab), 20 �M nicotine �10 �M SCH23390 � 50 �M sulpiride
(Ac), 20 �M nicotine �50 �M sulpiride (Ad), and lastly 10 �M SKF38393 alone (Ae). Note: none of the dopaminergic drugs changed the baseline frequency
of mIPSCs. B: group data showing the effect of SCH23390, sulpiride, and SKF38393 on nicotine-induced mIPSC enhancement. The reduction of nicotine (20
�M) effect by SCH23390 as shown in Ba was also observed with 100 �M nicotine for Nic�SCH23390 group and Nic�SCH23390�sulpiride group as shown
in Bb. Note: in Ba, SKF38393 application was performed in the absence of nicotine. *, comparison with the nicotine-alone group (the 1st bar).
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choline, exhibited any effect (Fig. 5). However, we have to
consider the experimental limitation of our relatively slow
perfusion system. Without a sufficiently rapid perfusion sys-
tem, the fast nicotinic component could be reduced (Zhang et
al. 1994). Our observation that nicotine’s effect on mIPSCs can
be rescued from 0 calcium suppression by switching to nico-
tine-containing normal calcium ACSF suggests that the rapidly
desensitizing component of the nicotinic current may not be
required for modulation of GABAergic mIPSCs. If nicotine’s
effect relied on the initial fast component (possibly mediated
by �7-containing receptors), we would not expect to see a
rescued nicotine response in normal calcium ACSF after pro-
longed exposure to agonist. Taken together these data help
support our proposal that non-�7 subunits are likely involved
in the enhancement of mIPSCs we observe. Further pharma-
cological analysis and/or use of knockout animals will be
necessary to identify the exact subtype of nicotinic receptor
involved.

nAChRs on GABAergic interneuron terminals trigger
enhanced mIPSCs

FS interneurons in striatum are able to induce ACh-sensitive
APs (Koos and Tepper 2002) and make multiple synaptic
contacts on MSNs (Koos et al. 2004). In our study, we
observed that nicotine application produced increases in sIPSC
amplitude but not mIPSC amplitude;, it is thus likely that at
least a part of this effect is mediated by activation of FS
interneurons. However, there are other types of GABAergic
interneurons; persistent and low-threshold spike (PLTS) neu-
rons and calretinin-colocalized neurons are present in the
striatum (Kawaguchi 1993; Kubota and Kawaguchi 2000;
Rymar et al. 2004) and could also contribute to the increase in
sIPSC amplitude. Reports based on anatomical (Tepper et al.
1998) and electrophysiological studies (Koos et al. 2004)
indicate that synaptic connections between MSNs (MSN to
MSN) are rare in slices prepared from animals younger than
postnatal day 15. Because we used animals of this age range
and routinely observed increases in GABAergic transmission
by nicotinic agonists, we do not think that MSNs are the major
source of mIPSCs. MSNs are also unlikely to be a major source
of nicotine-stimulated sIPSCs because we only detected a
modest subthreshold depolarization of MSNs with nicotine
application (Fig. 1Ba). Therefore nicotine-stimulated mIPSCs
recorded on MSNs could mostly come from the terminals of
striatal GABAergic interneurons, like FS interneurons.

Possible mechanism of nicotine effect on evoked GABAergic
synaptic transmission

Nicotine was found to produce a robust change in mIPSC
frequency, which at times was accompanied by diminished
eIPSCs (Fig. 6). There are two possible mechanisms that might
be responsible for diminished eIPSCs after nicotine enhance-
ment of GABA mIPSCs. First, this effect might result from an
occlusion of eIPSCs by depletion of transmitter after robust
nicotine-stimulated mIPSCs and sIPSCs. However, assuming
nicotine affects all synapses equally, it may be difficult for
readily releasable pool to be depleted by nicotine stimulation of
release. The nicotine-stimulated release rate at each synapse
would be well 
0.01Hz, given a conservative assumption of

500 synapses on each neuron (Guzman et al. 2003; Koos et al.
2004). Because MSNs can normally follow these frequencies,
we would not expect transmission to be blocked.

Another possibility is that the increased excitability and
sustained depolarization of inhibitory neurons by nicotine
induce inactivation of Na� channels leading to a blockade of
eIPSCs. Sustained depolarization by 15 mM KCl produced a
comparable result as nicotine, i.e., enhancement of mini sIPSC
frequency and profound reduction of eIPSC amplitude. In
contrast, 5 mM KCl neither affected mini frequency nor altered
amplitude of eIPSC with comparable levels of depolarization
as seen with nicotine application. The observation that higher
levels of somatic depolarization were produced by 15 mM KCl
(than nicotine) would suggest that depolarization induced so-
dium channel inactivation is not responsible for the nicotine-
induced increase in GABA release. However, it needs to be
noted that our current-clamp recordings of nicotine-induced
depolarization were performed on MSN somata instead of
interneuron terminals. It is conceivable that interneuron termi-
nals or axons may undergo stronger depolarization with nico-
tine leading to conduction block.

Indirect influence of dopamine D1 receptors on nicotine
stimulation of GABA mIPSCs

Dopamine plays a critical role in striatal function as abnor-
mal nigrostriatal projection has been implicated in diseases
such as Parkinson disease both in human and in animal models
(Bergman et al. 1998; Berke and Hyman 2000). In addition to
targeting to major striatal projection neurons, dopaminergic
inputs also terminate on striatal interneurons, where identifi-
cation of receptor subtype has been complicated (Bracci et al.
2002; Centonze et al. 2003). It is possible that the observed
enhancement of GABA mIPSC frequency by nicotine is me-
diated in part by dopaminergic neurons. To rule out an indirect
effect of nicotine on mIPSC frequency through stimulation of
DA release, we have performed a series of pharmacological
experiments with D1 and D2 antagonists and a D1 agonist. Our
results show that the D1 antagonist SCH23390 partially
blocked the enhancement of GABA mIPSCs by nicotine. If
dopaminergic terminals were excited by nicotine leading to
dopamine release, we would expect that a D1 agonist should
mimic nicotine’s effect and increase mIPSC frequency. Failure
of the D1 agonist SKF38393 to induce enhancement of GABA
mIPSCs suggests that the action of D1 antagonists is likely an
indirect effect. Our negative data with D1 agonist suggest that
a direct excitatory effect of dopamine on striatal GABAergic
interneurons are not sufficient to facilitate mIPSC frequency in
MSNs (Aosaki et al. 1998; Bracci et al. 2002). However, we do
not exclude the possibility that D1 receptors may in some way
affect GABAergic mIPSCs stimulated by nicotine.

Physiological function of nicotine-stimulated mIPSCs

One remaining question with our study concerns the rela-
tionship between the Cl� equilibrium potential and possible
depolarizing or hyperpolarizing effects of nicotine-stimulated
mIPSCs. In vivo (Mercuri et al. 1991) and in acute slices the
reversal potential for GABA responses was measured at ap-
proximately �60 mV with intracellular recording (Jiang and
North 1991; Kita 1996; Koos and Tepper 1999) and at �64
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mV with gramicidin-perforated patch (Bracci and Panzeri
2006). In our experiments, we used Cl� concentrations that led
to a �58-mV reversal potential. It is conceivable that this
reversal potential may be developmentally regulated or even
different for dendritic versus somatic compartments. Therefore
it is unclear whether nicotine-stimulated mIPSCs would depo-
larize the actual membrane potential of MSNs. The ability of
nicotine to robustly increase mIPSC rates to a point where they
begin to affect evoked synaptic activity suggest that nicotine
could be involved in changing the mode of inhibition in MSNs
from a phasic to a tonic one.

These findings raise the more general question of functional
significance of minis. Perhaps scenarios exist in vivo where
endogenous presynaptic modulators can increase minis to high
levels. Using in vivo dialysis of TTX and intracellular record-
ings, Pare et al. (1997) observed that relatively intense periods
of minis (�10 Hz) are common and contribute to regulation of
baseline synaptic parameters such as input resistance. Assum-
ing that a single mini is insufficient to produce AP firing by
itself, conditions that promote the spatial and temporal sum-
mation of multiple synaptic inputs could more effectively
modulate firing. For example, tonic miniature GABA release
occurs preferentially at sites close to the AP initiation site in
dentate gyrus granule cells and is likely to regulate their firing
(Claiborne et al. 1986). In the CA3 region of hippocampus,
mossy fibers form synapses onto the proximal dendrites of
CA3 pyramidal neurons (Ishizuka et al. 1990). Given that these
synaptic locations are relatively close to the AP trigger zones,
nicotine-stimulated minis might easily lead to firing even in the
presence of GABAergic inhibition (Sharma and Vijayaragha-
van 2003). Interestingly, current injection experiments indicate
that firing of electrically compact interneurons can be influ-
enced by individual minis (Carter and Regehr 2002).
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