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The brain’s cortical maps serve as a macroscopic framework

upon which additional levels of detail can be overlaid. Unlike

sensory maps generated by measuring the brain’s responses

to incoming stimuli, motor maps are made by directly

stimulating the brain itself. To understand the significance of

motor maps and the functions they represent, it is necessary to

consider the relationship between the natural operation of the

motor system and the pattern of activity evoked in it by artificial

stimulation. We review recent findings from the study of the

cortical motor system and new insights into the control of

movement based on its mapping within cortical space.
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Introduction
Mapping is a fundamental part of any systematic inves-

tigation of the unknown, yet the map of the brain still

contains swaths of terra incognita. In addition to gross

anatomical or cytoarchitectonic parcellation of the brain,

physiological details must be added in the form of func-

tionally defined brain regions. Many cortical areas can be

surveyed by recording brain activity evoked by specific

stimuli delivered to the sensory periphery, but motor

maps are unique in the sense that they are created by

directly stimulating the brain itself. Meaningful interpret-

ation of a motor map therefore requires an understanding

of both the natural flow of activity through the cortical

motor system and its reverberation through the same

network upon artificial stimulation. Here, we review

recent studies of naturally occurring and stimulus-evoked

activity in motor cortex in an attempt to strengthen the

link between movements and their representation in

cortex. The significance of maps for motor control and

of their plasticity for recovery from injury is examined.
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Finally, we discuss new light-based methods for mapping

motor cortex.

What form do motor maps take and what
purpose do they serve?
Traditionally, motor maps have been structured accord-

ing to the correspondence between a cortical point and

the muscles that are activated by its stimulation. Early

experiments with cortical stimulation in human surgical

patients revealed a somatotopic organization of motor

cortex, giving rise to the enduring concept of the motor

homunculus (Figure 1) [1]. This view progressed to

include multiple premotor regions in the cortices of

non-human primates [2,3], many of which project directly

to the spinal cord [4] (Figure 1). Parameters of movement

have also been used as an organizing principle for cortical

mapping. In an influential series of experiments in mon-

keys, the firing rates of individual neurons in motor cortex

were found to be related to the direction of forelimb

movement by a sinusoidal function, termed cosine tuning

[5]. Cells fired most vigorously during forelimb move-

ments in a particular preferred direction; these directions

can be weighted by firing rate and summed to produce a

population vector that predicts movement direction [6].

This finding has led to the development of brain machine

interfaces capable of extracting information from

neuronal activity to control prosthetic [7,8] or paralyzed

limbs [9]. Complementary experimentation with pro-

longed electrical stimulation revealed a macroscopic

organization of movement categories or postures in motor

cortex [10,11]. Similar movement maps have since been

described in humans [12,13] and rodents [14–16].

Although the activity of motor cortex appears to be

related to movement direction, this could also reflect

the contribution of limb biomechanics to a system prim-

arily concerned with the control of the musculature [17��].
For example, motor maps can be interpreted as repre-

senting movement endpoints or postures [18] or as the

activation of muscle synergies independent of the initial

configuration of the limb [19��]. Attempts to identify the

movement-related variables encoded by the firing of

motor cortex neurons have revealed a bewildering com-

plexity of neuronal tuning [20]. The influence of exter-

nally applied loads or initial joint angle varies among

neurons [11,21], with multiple forms of tuning reflected

at the population level [22]. This complexity may result

from a motor control strategy that employs sensory and

proprioceptive feedback to optimize movements toward a

behavioral goal despite variability and noise in both

sensory input and motor output [20,23,24]. The obser-

vation that movements evoked by stimulation of a given
www.sciencedirect.com
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Figure 1

CENTRAL

S
U

LC
U

S

SULCUS

ARCUATE

1 mm10 mm

M1

PMdc

SMA
pre-SMA

CMArCMAv

CMAd

PMdr

PMv
ArS

CS

CC

CgS

S  SENSE OF MOVEMENT
D  DESIRE TO MOVE

A ARM
B TRUNK
F FACE
H HEAD
I EYES
J LEG
L LIPS
M MOUTH
P HAND
Q FOOT
TO TONGUE
TU THUMB

= upper

(a) (b) (c)

= middle
= lower
= no arm posture

Current Opinion in Neurobiology

Movement maps in motor cortex. (a), composite map created from data collected in human surgical patients [1]. (b) Multiple motor regions in macaque

cortex, with areas containing retrogradely labeled corticospinal neurons marked in gray (modified from [4]). (c) Magnified view of macaque motor

cortex labeled according to the endpoint of arm movement evoked by electrical stimulation [10]. Abbreviations: ArS, arcuate sulcus; CC, corpus

callosum; CgS, cingulate sulcus; CS, central sulcus; M1, motor cortex; SMA, supplementary motor area; PM, premotor cortex (lower case suffixes

denote dorsal, rostral, and/or ventral subregions), CMA, cingulate motor area.
cortical point tend to converge toward a consistent end-

point or posture rather than following an invariant trajec-

tory could be taken as support for this model of cortical

motor function.

An additional function of the cortical motor system is the

integration of motor acts with sensory feedback. In

rodents especially, it may be more correct to speak of

the sensorimotor system as a whole given the degree of

overlap between sensory and motor representations of the

limbs [25,26]. The distinction between movement and

sensation is also blurred in cases such as the rodent

vibrissal system, where the whiskers must be moved to

scan the environment. Though non-overlapping regions

of vibrissal sensory and motor cortex exist in mice these
Figure 2
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areas are closely integrated (Figure 2). Neuronal firing in

whisker motor cortex encodes the angular position of

vibrissae [27] and modulates somatosensory cortical

activity [28], whereas stimulation of sensory cortex drives

whisker movements via a direct projection to the brain-

stem [15]. Sensorimotor integration extends beyond the

somatosensory system, with motor activity modulating

the function of visual cortex [29,30�].

More fundamentally, one can ask why topographically

organized maps should exist at all, rather than a more

stochastic (‘‘salt and pepper’’) arrangement of neurons.

Explanations for clustering include the reduced axonal

lengths needed to link preferentially interconnected

neurons with similar response properties [31]. Another
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ltage-sensitive dye imaging data illustrating the flow of activity through

nsory cortex [52]. The flow of natural or evoked activity between whisker

ds on the connectivity between these regions (right) [49].
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Properties of motor cortex underlying motor map structure. Motor maps

(e.g. the light-based movement map at left [16]) are products of the

cortical circuitry and the manner in which it responds to artificial

stimulation. Macroscopic subdivisions of motor maps into regions such

as the forelimb abduction and adduction areas (green and red regions of

map at left) likely arise from microscopic clustering of neuronal

properties. The green and red circles represent neurons with different

functional properties clustered within the black rectangles. The

anatomical substrate of motor maps also includes long-range

connections (bidirectional blue arrow) that link distant cortical regions.
possible determinant of map structure stems from the

increased connectivity observed between clonally related

cells in cortex [32].

What features of motor cortex circuitry give
rise to movement maps?
Emerging evidence from imaging experiments has con-

tributed to our understanding of the function of motor

cortex at the level of individual neurons (schematized in

Figure 3). Although neuronal response types appear to be

intermingled in motor cortex as in rodent visual cortex

[33], calcium imaging of L2/3 neurons in small fields of

mouse motor cortex (200 mm) has revealed a correlation

between the proximity of a pair of neurons and their

activity profiles during motor behavior (e.g. running vs.

grooming) [34]. This clustering exists at fine scales

(�100mm), exhibits temporal specificity for distinct

phases of motor acts such as lever pulling [35�], and

strengthens during learning [36]. Furthermore, the

activity of neurons situated within such clusters better

predicts ongoing motor behavior than more dispersed

cells [35�]. Cortical microstimulation, particularly if

restricted to a minimal volume of tissue [37], could

potentially recruit small clusters of neurons that share

synaptic inputs, exhibit coactivity and possess similar

tuning.
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The extent to which evoked activity can be compared to

the natural state during self-initiated movement further

depends on its downstream spread. The motor cortex is

an interconnected network, bound together by axon

collaterals that form boutons along their full lengths of

up to 7 mm in the cat [38]. The cortical points linked by

these collaterals can be functionally coupled through the

release of inhibition [39], and upon co-activation their

evoked motor activity sums linearly [40]. Consequently,

motor maps do not represent the motor output of an array

of independently activated cortical points. Rather, stimu-

lation anywhere in cortex likely triggers a cascade of

activation through horizontal interconnections, poten-

tially recruiting additional output from distant locations.

The propagation of this activity is thought to be chan-

neled through excitatory cortical circuits and shaped by

inhibition [41].

The considerable advances in brain-machine interface

research have been a boon to our understanding of natural

dynamic activity in the cortical motor system [42]. Longi-

tudinal cortical electrophysiological data have been col-

lected from animals engaged in the learning and

execution of a variety of motor acts [43,44]. These record-

ings are typically performed using multi-site electrode

arrays, permitting the spatiotemporal progression of

activity through motor cortex to be recorded [45�]. On

the basis of these experiments, it has been proposed that

cortical activity follows a dynamic trajectory through

neural space during movement preparation and execution

[46��,47]. It is not clear from the electrophysiological data

how this trajectory through abstract space corresponds

with the flow of activity through physical circuits in the

brain, but the latter can be hypothesized from our increas-

ingly detailed knowledge of connectivity within and

between cortical areas [48,49]. A question of primary

concern for physiologists employing brain stimulation is

the extent to which the brain activity produced by this

artificial stimulus resembles the natural pattern of activity

during self-initiated movement.

How does cortical stimulation drive complex
movements?
The effects of artificial stimulation on brain activity are

increasingly well documented. Pharmacological disinhi-

bition in a small region (�800 mm in diameter) of cat

motor cortex creates bursts of neural activity that propa-

gate within an area of �7 mm2 and are not significantly

affected by thalamocortical transection [50��]. Optoge-

netic stimulation of as few as 60 layer 5 cortical neurons in

mice can initiate waves of activity that spread through

both cortico-cortical and cortico-thalamic pathways [51].

These results suggest that intracortically spreading

activity could potentially recruit large cortical areas for

the integrated control of multi-jointed movements. Vol-

tage-sensitive dye imaging has revealed that this activity

propagates preferentially between interconnected areas
www.sciencedirect.com
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Figure 4

start
1 mm

1 mm

Motor maps

Complex movements
1mm

X-Y scanning stage

motion sensor
473nm
laser anesthetized mouse

Abduction Adduction

Mab  stimulation

Mad  stimulation

Current Opinion in Neurobiology

Light-based motor mapping. Top: method for light-based mapping in

Channelrhodopsin-2 transgenic mice [16,25]. Anesthetized mice are

placed on a scanning stage and their motor cortex is stimulated with 10ms

pulses from a 473 nm laser (blue asterisk) while evoked movements of the

contralateral forelimb are recorded using a laser motion sensor. Middle:

stimulation is targeted to an array of sites (left) to generate a pixel-based

map (right) where movement amplitude is indicated by pixel brightness

and movement direction by color (red for adduction, green for abduction).

The map is overlaid with movement sensor recordings in white (mean of

three repetitions). Bottom: after generating a motor map the centers of the

abduction and adduction motor regions can be targeted for stimulation

(500 ms pulse train) while unrestrained movement trajectories are

recorded with a video camera (left). Trajectories at right represent the

mean of 16 mice, error bars are SEM.
(Figure 3). For example, electrical stimulation of soma-

tosensory cortex triggers a pattern of dynamic activity

similar to that observed after sensory stimulation of the

corresponding body part [52,53�]. This spread of activity

is likely mediated by connections that selectively innerv-

ate cortical domains and even exhibit specificity for the

functional profile of the downstream target [54�]. Mag-

netic resonance imaging following optogenetic stimu-

lation has illuminated functional connectivity on a

global scale, albeit with decreased spatial and temporal

resolution [55,56].

Cortical stimulation has been hypothesized to recruit the

circuitry of motor cortex to produce naturalistic complex

movements [11]. It is surprising that these movements

can be evoked with relatively simple stimulus trains given

that the simultaneous activation of many neurons is

unlikely to replicate the temporal structure of natural

activity [57,58]. Indeed, electrical stimulation may over-

ride and replace ongoing natural activity by antidromi-

cally obliterating action potentials [59��]. In many ways,

however, stimulus-evoked movements do resemble

natural movements. The expression of these movements

requires the intact function of the intracortical circuitry

and can be disrupted by the application of glutamate or

GABA receptor antagonists [16]. Complex movements of

the forelimb are only evoked by pulse trains lasting

hundreds of ms [10,14,16,60,61], corresponding to the

typical duration of a reach. In monkeys, these prolonged

pulse trains recruit muscle synergies of the hand that

closely resemble those recorded during complex natural

grasping movements [19��].

Plasticity of movement maps
Motor maps have provided some of the most convincing

demonstrations of the brain’s ability to reorganize during

the acquisition of new skills [62,63] or after injury [64–69].

Map plasticity is associated with synaptic alterations [70]

and spine turnover [71–75] in addition to remodeling of

axonal processes [76,77]. Cortical stimulation has been

investigated as a means of enhancing motor learning and

rehabilitation after injury, and appears to be most effec-

tive when combined with motor training [78–82]. It

therefore seems reasonable to hypothesize that non-

specific stimulation, if applied in conjunction with spon-

taneous, goal-directed activity in the motor system, may

be able to augment cortical plasticity and improve recov-

ery. Further research in this area has the potential to both

deepen our understanding of the cortical motor system

and to optimize rehabilitative strategies [83].

Technical advances in motor mapping
The ever-expanding suite of optogenetic tools has

enabled the use of light-based stimulation for motor

mapping (Figure 4) [25]. Light-based mapping is rapid

and minimally invasive, permitting repeated mapping

over time scales ranging from minutes to months
www.sciencedirect.com 
[16,25,84]. This has facilitated comparisons of map organ-

ization immediately before and after application of

pharmacological agents [16] and enabled longitudinal

studies in animal models that would not otherwise be

possible [69]. Finally, light-based mapping can repeat-

edly sample hundreds of uniformly distributed cortical

sites in a randomized order to minimize the confounding

temporal effects of anesthesia [85] and cortical plasticity
Current Opinion in Neurobiology 2014, 24:88–94
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[86]. As with any technique, the advantages of light-based

stimulation are balanced by its limitations. Scattering

degrades the spatial resolution of light-based motor map-

ping [87]. The cellular consequences of long-term expres-

sion of high levels of membrane protein must also be

considered [88]. To date, most optogenetic experiments

have been performed in rodents, though research in

primates holds promise [89]. Many of the greatest advan-

tages of optogenetics for motor mapping have yet to be

realized, however, and will likely stem from the ability to

activate, inhibit, or modulate specific classes of neurons.

For example, Thy-1 transgenic mice [90] express ChR2

predominantly in layer 5 cortical neurons, meaning that

these output neurons can be stimulated relatively selec-

tively [25,36,84]. Alternate expression methods can target

neurons according to their transmitter type, cortical layer

[91,92], or even their connectivity [93��,94].

Conclusion
Decades of experimentation in the motor cortex have

contributed successive layers of detail to motor maps.

This increasing complexity and sophistication is a reflec-

tion of the cortical circuitry and the functions that it

serves. In order to appreciate the significance of a motor

map, however, it is necessary to understand the physio-

logical consequences of the artificial stimulation used to

produce it. The fidelity of motor maps depends on the

similarity between natural and stimulus-evoked cortical

activity. As additional data about static connectivity and

the dynamic flow of activity through cortical circuits are

collected, this comparison will continue to be reassessed

and the meaning of motor maps reevaluated.
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